Inspectoratul Scolar Judetean

Str. Stefan cel Mare Nr. 6 Constanta, cod 900726 Telefon: 0241-611913 Telefax: 0241-618880 E-mail: isj-cta@isjcta.ro www.isjcta.ro

1. Cele două corpuri din figură de mase $m_{1}=3 \mathrm{~kg}$ şi $m_{2}=2 \mathrm{~kg}$ sunt legate printr-un fir trecut peste un scripete ideal. Coeficientul de frecare dintre corpuri şi dintre corpul de masă m_{1} şi suprafața orizontală pe care se află este acelaşi. Pentru declanşarea mişcării sistemului trebuie aplicată corpului de masă $m_{2} \circ$ forță minimă orizontală $F=9 \mathrm{~N}$, aşa cum se vede în figură.
a) Reprezentați toate forțele care acționează asupra celor două corpuri.

b) Determinați valoarea coeficientului de frecare..
c) Determinați tensiunea din firul de legătură.

Selectată şi prelucrată de Catedra de fizică a Colegiului Tehnic „Tomis" Constanța

Rezolvare şi barem de notare.

a) Reprezentarea corectă a forțelor care acționează asupra corpului de masă m_{1} (1,5 puncte)

Reprezentarea corectă a forțelor care acționează asupra corpului de masă m_{2} (1,5 puncte)
Condititia de echilibru pentru corpul de masă m_{1} :
$T=F_{f 1}+F_{f 2}$ (0,5 puncte)
$N_{1}=N_{2}+G_{1}$ (0,5 puncte)

Conditita de echilibru pentru corpul de masă m_{2} :
$F=T+F_{t 2}$ (0,5 puncte)
$N_{2}=G_{2}$ (0,5 puncte)
Expresilie forțelor:
$N_{2}=m_{2} g(0,25$ puncte)

$N_{1}=m_{2} g+m_{1} g(0,25$ puncte $)$
$F_{f 2}=\mu N_{2}=\mu m_{2} g$ (0,25 puncte)
$F_{f 1}=\mu N_{1}=\mu\left(m_{1}+m_{2}\right) g(0,25$ puncte $)$
$T=\mu\left(m_{1}+m_{2}\right) g+\mu m_{2} g=\mu\left(m_{1}+2 m_{2}\right) g(0,5$ puncte $)$
$F=\mu\left(m_{1}+2 m_{2}\right) g+\mu m_{2} g=\mu\left(m_{1}+3 m_{2}\right) g(0,5$ puncte $)$, de unde:
$\mu=\frac{F}{\left(m_{1}+3 m_{2}\right) g}=0,1(1$ punct $)$.
$T=F \cdot \frac{m_{1}+2 m_{2}}{m_{1}+3 m_{2}}=7 N(1$ punct).

Total: 9 puncte +1 punct din oficiu $=10$ puncte

Orice altă rezolvare corectă se punctează corespunzător

2. Pe o şosea paralelă cu un perete vertical de stâncă se deplasează cu viteză constantă un autoturism. Distanța dintre şosea şi perete este $d=510 \mathrm{~m}$. În momentul în care maşina trece prin dreptul indicatorului care restrictionează viteza maximă la $v_{\max }=70 \mathrm{~km} / \mathrm{h}$ conducătorul autoturismului claxonează scurt. Un pieton aflat în repaus pe şosea înregistrează un interval de timp $\Delta t=1 \mathrm{~s}$ între momentele recepționării sunetului direct și al celui reflectat de perete. După încă $\Delta t^{\prime}=63 \mathrm{~s}$ prin dreptul pietonului trece autoturismul. Cunoscând viteza sunetului în aer $c=340 \mathrm{~m} / \mathrm{s}$, determinați :
a) distanța dintre pieton și indicatorul care restricționează viteza maximă la $v_{\text {max }}=70 \mathrm{~km} / \mathrm{h}$;
b) dacă conducătorul autoturismului a respectat indicatorul de restrictionare a vitezei.

Prof. Anton Pantelimon, ISJ Constanța

a) În figură (1 punct) sunt reprezentate pozițitile autoturismului în momentul în care conducătorul claxonează, adică în dreptul indicatorului I, a pietonului P şi a punctului R în care sunetul se reflectă de perete pentru a fi receptionat de pieton. Având în vedere legea reflexiei $i=r$, rezultă că cele două triunghiuri dreptunghice IMR şi PMR sunt congruente. (1 punct)

Dacă notăm $\mathrm{cu} t_{1}$ timpul după care sunetul ajunge direct la pieton parcurgând distanța $I P=2 x$ şi $\mathrm{cu} t_{2}$ timpul după care sunetul ajunge prin reflexie la pieton parcurgând distanța $I R+R P=2 y$, putem scrie:
$2 x=c \cdot t_{1}\left(0,5\right.$ puncte) şi $2 y=c \cdot t_{2}(0,5$ puncte) , de unde:
$y-x=\frac{c}{2}\left(t_{2}-t_{1}\right)=\frac{c}{2} \Delta t$. (0,5 puncte)
Pe de altă parte:
$y^{2}-x^{2}=d^{2}$ sau $(y+x)(y-x)=d^{2}(0,5$ puncte) şi îlocuind rezultă:

$$
y+x=\frac{2 d^{2}}{c \cdot \Delta t} \cdot(1 \text { punct })
$$

Din cele două relații se obține:
$I P=2 x=\frac{2 d^{2}}{c \cdot \Delta t}-\frac{c}{2} \Delta t=1360 \mathrm{~m} \cdot(1,5$ puncte)
b) Putem acum calcula timpul:
$t_{1}=\frac{2 x}{c}=4 s .(0,5$ puncte $)$
Distanța $I P=2 x$ este parcursă de automobil în timpul
 $t=t_{1}+\Delta t+\Delta t^{\prime}=68$ s (1 punct) ssil atunci viteza automobilului va fi:
$v=\frac{2 x}{t}=20 \mathrm{~m} / \mathrm{s} .(0,5$ puncte $)$
Transformând $v=72 \mathrm{~km} / \mathrm{h}$, mai mare decât viteza maximă admisă de indicator. (0,5 puncte)
Total: 9 puncte +1 punct din oficiu $=10$ puncte
Orice altă rezolvare corectă se punctează corespunzător
3. Distanța dintre o lentilă convergentă (L) cu distanța focală $f=24 \mathrm{~cm}$ și 0 oglindă plană (0) este $D=33 \mathrm{~cm}$. Între ele se plasează un obiect $A B$, la distanța $a=3 \mathrm{~cm}$ de oglindă. Deplasând un ecran mobil (E), situat transversal dincolo de lentilă pe axul optic principal al lentilei, se obțin imagini două clare ale obiectului pentru două pozițiti ale acestuia. Se cer:
a) deplasarea ecranului între cele două poziții pentru care s-au obținut imagini clare ale obiectului;
b) raportul înăltitimilor celor două imagini;

(0)
c) constructiaa celor două imagini.

Selectată şi prelucrată de Catedra de fizică a Colegiului Tehnic „Tomis" Constanța

Rezolvare şi barem de notare

a) Imaginea $A^{\prime} B^{\prime}$ a obiectului $A B$ în oglinda plană, simetrică în raport cu obiectul fată̆ de oglindă va constitui un nou obiect real pentru lentilă. Va fi deci vorba de două obiecte cu aceeaşi înălțime, unul la distanța $-x_{1}$ de lentilă şi altul la distanța $-x_{1}^{\prime}=-x_{1}+2 a$ (1 punct) de aceasta. Distanța de la obiectul $A B$ la lentilă va fi $-x_{1}=D-a=30 \mathrm{~cm}$, de unde $x_{1}=-30 \mathrm{~cm}$, iar diatanța de la $A^{\prime} B^{\prime}$ la lentilă va fi $x_{1}^{\prime}=x_{1}-2 a=36 \mathrm{~cm}$ (0,5 puncte)

Formulele punctelor conjugate conduc la:

$x_{2}=\frac{x_{1} \cdot f}{x_{1}+f}=120 \mathrm{~cm}$ (1 punct) și la fel :
$x_{2}^{\prime}=\frac{x_{1}^{\prime} \cdot f}{x_{1}^{\prime}+f}=72 \mathrm{~cm} \quad$ (0,5 puncte $)$.
Deplasarea ecranului trebuie făcută pe distanța $\Delta x_{2}=x_{2}^{\prime}-x_{2}=48 \mathrm{~cm}$ (0,5 puncte).
b) Mărirea transversală pentru imaginea $A_{1} B_{1}$ a obiectului $A B$ î lentilă este:
$\beta=\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}=\frac{f}{x_{1}+f}$ (1 punct), iar mărirea transversală pentru imaginea $A_{1}^{\prime} B_{1}^{\prime}$ a obiectului $A^{\prime} B^{\prime}$ în lentilă este:
$\beta^{\prime}=\frac{y_{2}^{\prime}}{y_{1}^{\prime}}=\frac{x_{2}^{\prime}}{x_{1}^{\prime}}=\frac{f}{x_{1}^{\prime}+f}$ (1 punct)
Cum imaginea într-0 oglindă plană este egală cu obiectul $y_{1}^{\prime}=y_{1}(0,5$ puncte) şi atunci:
$\frac{y_{2}^{\prime}}{y_{2}}=\frac{\beta^{\prime}}{\beta}=\frac{x_{1}+f}{x_{1}^{\prime}+f}=\frac{1}{2}(1$ punct $)$
Constructia geometrică corectă (2 puncte).
Total: 9 puncte +1 punct din oficiu $=10$ puncte
Orice altă rezolvare corectă se punctează corespunzător

