$5^{\text {th }}$ Junior Balkan Olympiad in Informatics
Bistrița, 3-9 July 2011
Day 2

heritage - solution

Author: Adrian Panaete
"A.T. Laurian" National College, Botoşani.

First step. If S is the sum of the \mathbf{n} sons` age, we will parcel the polygon with S -1 vertical fences in S equal areas. For example if the son has 4 sons of $1,2,3$, respectively 4 years old, we have $\mathrm{S}=10$ so we parcel the polygon in 10 equal areas using 9 fences

Second step. Now we can observe that each son will take $v / i J$ consecutive areas. For example the sons could occupy the areas in the order [1 year, 2 years, 3 years and 4 years]. We will use the fences 1,3 and 6 .

Another example: the sons could occupy the areas in the order [3 years, 1 year, 2 years and 4 years]. We will use the fences 3,4 and 6 .

It doesn't matter the order in which the sons will occupy the areas from left to right, we will use $\mathbf{n - 1}$ from the $\mathrm{S}-1$ fences we have already determined. Using all the possible orders we will have \boldsymbol{n} ! $=1 * 2 * \ldots * \boldsymbol{n}$ cases. For each case we can determine the sum of the fences' length. We choose the smallest one.
$5^{\text {th }}$ Junior Balkan Olympiad in Informatics
Bistrița, 3-9 July 2011
Day 2

First step can be solved linearly (in $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{S})$) if we pass from left to right through initial rectangular trapezoids and we use geometrical formulae in fixing the $\mathrm{S}-1$ fences. We can also use binary search in this step.

Second step (backtracking) can have a \boldsymbol{O} ($\boldsymbol{n}!$) complexity enough to respect the time limit because for $\boldsymbol{n}=\boldsymbol{8}$ we have $\boldsymbol{n}!=\mathbf{4 0 3 2 0}$.

