

19th Balkan Olympiad in Informatics

Bistriţa, 3-9 July 2011

Day 2

trapezoid - solution

This is a dynamic programming task, with the fruitful use of well-known data structures. There
are various possible approaches with time and memory complexities O (n2), O (n log2 n) and O (n
log n).

Every trapezoid is represented by two intervals (one on each horizontal line). We can normalize
the coordinates, and get the permutation from 1 to 2n. This can be easily done by sorting the
arrays a and b (and c and d) in O (n log n) time, with two additional arrays.

We could make things easier by introducing two dummy trapezoids, one on the left and one on
the right side with large coordinates.

Next, we will calculate the size of the maximum independent set. We can define partial ordering
by sorting the trapezoids according to the upper left corner a (i). Let max_ind (i) denote the size
of the maximum independent set of trapezoids T(1), T(2), …, T(i-1) that contain trapezoid T(i). It
simply follows:

max_ind (i) = max {1 + max_ind (k)},
 where 1 ≤ k ≤ i and T (k) lies completely on the left of T (i)

This produces O (n2) dynamic programming algorithm.

In order to get O (n log n) solution, we will use a binary indexed tree (cumulative table) data
structure. Cumulative tables in logarithmic time perform three operations on the array x:

- for given index k and number m, add m to the value x (k)
- for given index k, calculate the partial sum x (1) + x (2) + … + x (k)
- for given index k, calculate the maximum value among x (1), x (2), …, x (k).

Let cum_max be the cumulative table for maintaining the partial maximums. Traverse the
coordinates from 1 to 2n, and for each left upper coordinate a (i) calculate max_ind (i) based on
the maximum value among cum_max (1), cum_max (2), …, cum_max (c (i)), while for the right
upper coordinate b (i) write max_ind (i) in the cumulative table on the index d (i). The final
solution is max_ind (n + 1).

The second part is more difficult. The quadratic dynamic programming solution is given in the
following pseudo code:

num_max_ind (0) = 1;
for i = 1 to n do begin
 num_max_ind (i) = 0;
 for j = 0 to i – 1 do begin
 if ((max_ind (j) + 1 == max_ind (i)) and (a (j) > b (i)) and (c (j) > d (i)) then
 num_max_ind (i) = num_max_ind (i) + num_max_ind (j);
 end;
end;

19th Balkan Olympiad in Informatics

Bistriţa, 3-9 July 2011

Day 2

We will use again cumulative tables for the designing O (n log n) solution. The main problem
here is how to manipulate the partial sums. Namely, for each trapezoid T(i), we need to sum the
values num_max_ind (j) of those trapezoids T(j) which are entirely on the left of T(i) with
additional condition max_ind (j) + 1 = max_ind (i).

This can be done by considering pairs (k, k + 1) of two neighboring values 1 ≤ k ≤ max_ind (n +
1). Using two additional arrays for coordinates and trapezoid indices, we can traverse trapezoids
T (i) from left to right, such that max_ind (i) = k or max_ind (i) = k + 1. First, we need to carefully
preprocess all trapezoids and store the coordinates for each pair (k, k + 1) in one array (or array of
dynamic arrays) in order to keep memory limit O (n). Therefore, we fill the cumulative table with
the values for trapezoids with max_ind (i) = k,and calculate the value num_max_ind (i) for
trapezoids with max_ind (i) = k+1. Instead of resetting the cumulative table for each k, we can
remove the values by another traversing the array of indices.

Since every trapezoid will be added and removed from the cumulative table, the total time
complexity is O (n log n). This reusing of the cumulative table makes this task very interesting.

