cmp-solution

There are several solutions for this problem. The best solution the Scientific Committee has uses $\mathrm{T}=10$, but we believe that $\mathrm{T}=9$ is also achievable and deserves more than 100 points.

- A simple $T=17$ solution:

We consider a binary tree that has 4096 leaves.
Remember(a): we set all the nodes from leaf " a " to the root to 1 .
$\operatorname{maxA}=12$
Compare(b): Our goal is to determine the lowest common ancestor (LCA) for leaf a and leaf b. Since the whole path from the root to the leaf is set to 1 we can do a binary search. Once we have the LCA we can return the $-1,0$ or 1 .
$\operatorname{maxB}=5$

The next solutions use one-hot encoding.
This encoding uses N bits for representing a number from 0 to $\mathrm{N}-1$. For a given number X we only set the bit X to 1 and leave the rest set to 0 . The advantage of this method is that we only need to write 1 bit. While reading a value could take $\mathrm{N}-1$ reads (we look for the bit set to 1), comparing is a little faster. It takes $(\mathrm{N}-1) / 2$ reads. We only need to search from the current position to the closest end (0 or $\mathrm{N}-1$).

- \quad Some tree solutions $(T=13)$:

We change the simple binary tree from the previous solution. We still have at least 4096 leaves, but the internal nodes will have a variable number of children. For instance let's assume that we have 6 levels and the number of children for each level is A, B, C, D, E and F. We chose the degree for each level such that $A * B * C * D * E * F=4096$.

To encode a value in a node we use the one-hot encoding.

Let's consider $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{E}=\mathrm{F}=4$

Remember(a): we set all the nodes from leaf "a" to the root to 1 .
$\operatorname{maxA}=6$, since we have 6 nodes and encoding takes 1 bit_set() call.
Compare(b): Considering the same representation for b again we look for LCA. However this time we do a top-down traversal. As soon as the bit we expect to be set to 1 is 0 we try to determine if b is higher or lower.

Worst case is when the last bit is not set 1 . In this case we need to read an additional bit.
$\operatorname{maxB}=7$, since we have 6 nodes and an additional bit_get () .

- Further optimizations ($T=12$):

For the previous solution we observe that the worst case is achieved when we miss the bit in the last node.

If we choose $A=7, B=6, C=5, D=4, E=3, F=2$ then maxB becomes 6 . This solution also works if comparing a one-hot encoding is done in $\mathrm{N}-1$ reads and not ($\mathrm{N}-1$)/2.

- Breaking the maxA - maxB symmetry $(T=10)$:

Instead of 6 levels for our tree we chose 4 levels of degree: $12,10,8,6$.
maxA becomes 4 and maxB becomes 6 .
This solution uses the $\mathrm{T}=12$ optimization.

For a given set of maxim branching factors the formula for T is:
num_levels $+\max \left(b r a n c h i n g _f a c t o r _o n _l e v e l[i] / 2+1+i f o r i \operatorname{in}\right.$ range(0 , $\left.n u m _l e v e l s\right)$)
with product(branching_factor_on_level(i)) > 4095
$19^{\text {th }}$ Balkan Olympiad in Informatics
Bis)
Day 2

- Mixed-radix

All the above tree solutions don't really need a tree. For instance let's pick the $\mathrm{T}=10$ above solution.

We can encode the value from the root in the bits from 1 to 12 , the value from the node on the second level in the memory from 13 to 23 and so on.

