$19^{\text {th }}$ Balkan Olympiad in Informatics
Bistrița, 3-9 July 2011
Day 1

Medians - solution

The algorithm presented below assumes that there exists a solution. Checking if a solution actually exists can be added pretty easily to the algorithm.

We will construct the permutation $A[1], \ldots, A[2 * N-1]$ incrementally, in a greedy manner. Let vmin and vmax be two variables, initially set to 0 and $2 * N$. Let used be a binary array with $2 * N+1$ elements, which is all set to 0 , except for used[0] and used $[2 * N]$, which are set to l.

The function updateVmin() proceeds as follows: as long as used[vmin]=1, it increments vmin. The function updateVmax() proceeds as follows: as long as used $[v \max]=1$, it decrements $v \max$.

The overall algorithm proceeds as follows. First, we have $A[1]=B[1]$ (and then we set u sed $[A[1]]=1)$. Then:

```
for i=2 to N do {
    if (B[i] is equal to B[i-1]) then {
```

 \(/ /\) add to the permutation the smallest and the largest unused elements.
 updateVmin()
 \(A[2 * i-2]=v m i n ;\) used \([v m i n]=1\)
 updateVmax ()
 \(A[2 * i-1]=v m a x ;\) used \([v \max]=1\)
 \}
 if \((B[i]>B[i-1])\{\)
 if (used[B[i]] is equal to 0) \{
 \(/ / \mathrm{B}[\mathrm{i}]\) has not been added to the permutation, yet.
 // Add \(\mathrm{B}[\mathrm{i}]\) to the permutation and the largest unused element.
 \(A[2 * i-2]=B[i] ;\) used \([B[i]]=1\)
 updateVmax ()
 \(A[2 * i-1]=\) vmax; used \([\) vmax \(]=1\)
 \} else \{
 // \(\mathrm{B}[\mathrm{i}]\) already exists in the permutation.
 // Add the largest two unused elements.
 updateVmax()
 \(A[2 * i-2]=v \max ;\) used \([v m a x]=1\)
 updateVmax()
 \(A[2 * i-1]=\) vmax; used \([\) vmax \(]=1\)
 \}
 \}
 Bistrița, 3-9 July 2011
Day 1

```
if \((B[i]<B[i-1])\{\)
    if (used[B[i]] is equal to 0 ) \{
                \(/ / \mathrm{B}[\mathrm{i}]\) has not been added to the permutation, yet.
                // Add \(\mathrm{B}[\mathrm{i}]\) to the permutation and the smallest unused element.
                \(A[2 * i-2]=B[i] ;\) used \([B[i]]=1\)
            updateVmin()
            \(A[2 * i-1]=\) vmin; \(u s e d[v m i n]=1\)
    \} else \{
            \(/ / \mathrm{B}[\mathrm{i}]\) already exists in the permutation.
            // Add the smallest two unused elements.
            updateVmin()
            \(A[2 * i-2]=v m i n ;\) used \([v m i n]=1\)
            updateVmin()
            \(A[2 * i-1]=v m i n ;\) used \([\) vmin \(]=1\)
    \}
    \}
```

\}

The time complexity of the algorithm is $\boldsymbol{O}(N)$.

Proof of correctness:

We first define lower $(i)=i-1$ and upper $(i)=2 * N+1-i$. Note that, when a solution exists, we always have $B[i]>$ lower (i) and $B[i]<$ upper (i) (that means none of the numbers $1, \ldots, i-1$ or $2 * N+1-i, \ldots, 2 * N-1$ can be the $i^{\text {th }}$ median or any median after the $\left.i^{t h}\right)$. We will prove that whenever we add vmin to the permutation, we have vmin<=lower(i) and whenever we add vmax to the permutation, we have $v \max >=\operatorname{upper}(i)$. If that is the case, then it is obvious that our algorithm finds a correct solution. That's because adding vmin or vmax to the permutation will not interfere in any way with the values of the medians after the current index i.

A solution does not exist when $B[i]$ does not obey the inequalities regarding lower(i) and upper (i) or when $B[i]$ and $B[i-1]$ are not adjacent in the sorted order of all the first $2 * i-1$ elements of the permutation. Note that, if our claim regarding vmin and vmax is true, then our algorithm cannot cause any of the previous conditions to occur (unless the $B[i]$ values do not allow for any solution).

We will consider several cases (for $2<=i<=N$). We will always assume that we have lower $(i)<B[i]<$ upper (i) (otherwise, we know from the start that there is no solution).

Case 1: $\mathrm{B}[\mathrm{i}]=\mathrm{B}[\mathrm{i}-1]$

We need to add vmin and vmax to the permutation.
Let's assume that all the numbers $1, \ldots$, lower (i) are already in the permutation before considering the $i^{\text {th }}$ median (and thus, we will have vmin >lower (i)). In this case, the
$19^{\text {th }}$ Balkan Olympiad in Informatics
Bistrița, 3-9 July 2011
Day 1
median $B[i-1]$ of the first $2 *(i-1)-1$ elements of the permutation must be exactly $i-1$ (because there would be exactly $i-2$ elements smaller than it in the permutation). However, $B[i]$ cannot be equal to $i-1$, because $i-1=\operatorname{lower}(i)$. Thus, we cannot have $B[i]=B[i-1]$. This contradicts our initial assumptions, leading us to the conclusion that at least one of the numbers $1, \ldots$, lower (i) was not used among the first $2 *(\mathrm{i}-1)-1$ elements of the permutation. vmin will be equal to one of the numbers not used which are at most equal to $\operatorname{lower}(i)$ and, thus, we will have v min $<=\operatorname{lower}(i)$.

The proof is similar for vmax (actually, it is symmetrical).

Case 2: $\mathrm{B}[\mathrm{i}]<\mathrm{B}[\mathrm{i}-1]$

Subcase 2.1: $B[i]$ does not appear as a median before the index i.
We assume our claim to be correct for the first $i-1$ medians and we will prove it to be correct for the first i medians. This means that neither vmin or vmax were ever equal to $B[i]$. Thus, $B[i]$ does not exist in the permutation so far and we can add it. As for vmin (which must also be added to the permutation), we will show that vmin $<=$ lower (i).

As before, let's assume that all the numbers $1, \ldots$, lower (i) occur among the first $2 *(i-1)-1$ elements of the permutation. But then we must have $B[i-1]=i-1$. And, since $B[i]>$ lower (i), we would have $B[i]>B[i-1]$ (but this contradicts our initial assumption!).

Subcase 2.2: $B[i]$ appeared as a median at some previous index (possibly more than once).

As in the previous subcase, we assume that our claim is correct for the first $i-1$ medians and then we will prove that it is also correct for the first i medians.

We will need to add vmin to the permutation two times. Thus, we have to prove that at least two elements among the set l, \ldots, lower (i) have not been used, yet. Let's assume first that all the elements $1, \ldots$,lower (i) were used among the first $2 *(i-1)-1$ elements of the permutation. This case is handled as in the previous subcase (the obtained contradiction is, again, that $B[i]>B[i-1])$.

Let's assume now that all the elements $1, \ldots$, lower (i) have been used among the first $2 *(i-1)-1$ elements of the permutation, except one (whose value we denote by X). In this case, we have $B[i-1]>$ lower $(i)=i-1$. Since $B[i]$ appeared before as a median, it must a value adjacent to $B[i-1]$ (in the sorted order of all the first $2 *(i-1)-1$ elements of the permutation). Note how the value just before $B[i-1]$ in the sorted order is exactly lower $(i)=i-1$ (because lower (i) is the $(i-2)^{\text {nd }}$ elements in the sorted order). Thus, we obtain $B[i]=$ lower (i). But this contradicts our general assumption that $B[i]>$ lower (i).

Case 3: $\mathrm{B}[\mathrm{i}]>\mathrm{B}[\mathrm{i}-1]$.

This case is handled similarly to Case 2, but in a symmetrical manner (it also has two subcases).

