Day 1

1 Let p be a prime number, $p \neq 3$, and integers a, b such that $p \mid a+b$ and $p^{2} \mid a^{3}+b^{3}$. Prove that $p^{2} \mid a+b$ or $p^{3} \mid a^{3}+b^{3}$.

2 Prove that for every $n \in \mathbb{N}^{*}$ exists a multiple of n, having sum of digits equal to n.
53 Let $A B C$ be an acute-angled triangle. We consider the equilateral triangle $A^{\prime} U V$, where $A^{\prime} \in(B C), U \in(A C)$ and $V \in(A B)$ such that $U V \| B C$. We define the points B^{\prime}, C^{\prime} in the same way. Prove that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent.

44 Let $A B C$ be a triangle, and D the midpoint of the side $B C$. On the sides $A B$ and $A C$ we consider the points M and N, respectively, both different from the midpoints of the sides, such that

$$
A M^{2}+A N^{2}=B M^{2}+C N^{2} \text { and } \angle M D N=\angle B A C .
$$

Prove that $\angle B A C=90^{\circ}$.
5 Let n be an integer, $n \geq 2$, and the integers $a_{1}, a_{2}, \ldots, a_{n}$, such that $0<a_{k} \leq k$, for all $k=1,2, \ldots, n$. Knowing that the number $a_{1}+a_{2}+\cdots+a_{n}$ is even, prove that there exists a choosing of the signs + , respectively - , such that

$$
a_{1} \pm a_{2} \pm \cdots \pm a_{n}=0 .
$$

Romania Junior Balkan Team Selection Tests
 Timisoara, Bucharest 2008

Day 2

1 Consider the acute-angled triangle $A B C$, altitude $A D$ and point E - intersection of $B C$ with diameter from A of circumcircle. Let M, N be symmetric points of D with respect to the lines $A C$ and $A B$ respectively. Prove that $\angle E M C=\angle B N E$.

2 In a sequence of natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ every number a_{k} represents sum of the multiples of the k from sequence. Find all possible values for n.

3 Let n be a positive integer and let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that:

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \frac{1}{a_{i}^{2}}
$$

Prove that for every $i=1,2, \ldots, n$ we can find i numbers with sum at least i.
44 Let a, b be real nonzero numbers, such that number $\lfloor a n+b\rfloor$ is an even integer for every $n \in \mathbb{N}$. Prove that a is an even integer.

Romania Junior Balkan Team Selection Tests

Timisoara, Bucharest 2008

Day 3

1 From numbers $1,2,3, \ldots, 37$ we randomly choose 10 numbers. Prove that among these exist four distinct numbers, such that sum of two of them equals to the sum of other two.

2 Let a, b, c be positive reals with $a b+b c+c a=3$. Prove that:

$$
\frac{1}{1+a^{2}(b+c)}+\frac{1}{1+b^{2}(a+c)}+\frac{1}{1+c^{2}(b+a)} \leq \frac{1}{a b c} .
$$

53 Solve in prime numbers $2 p^{q}-q^{p}=7$.
4 Let d be a line and points M, N on the d. Circles $\alpha, \beta, \gamma, \delta$ with centers A, B, C, D are tangent to d, circles α, β are externally tangent at M, and circles γ, δ are externally tangent at N. Points A, C are situated in the same half-plane, determined by d. Prove that if exists an circle, which is tangent to the circles $\alpha, \beta, \gamma, \delta$ and contains them in its interior, then lines $A C, B D, M N$ are concurrent or parallel.

Romania Junior Balkan Team Selection Tests
 Timisoara, Bucharest 2008

Day 4

1. Let $A B C D$ be a convex quadrilateral with opposite side not parallel. The line through A parallel to $B D$ intersect line $C D$ in F, but parallel through D to $A C$ intersect line $A B$ at E. Denote by M, N, P, Q midpoints of the segments $A C, B D, A F, D E$. Prove that lines $M N, P Q$ and $A D$ are concurrent.

2 Let m, n be two natural nonzero numbers and sets $A=\{1,2, \ldots, n\}, B=\{1,2, \ldots, m\}$. We say that subset S of Cartesian product $A \times B$ has property (j) if $(a-x)(b-y) \geq 0$ for each pairs $(a, b),(x, y) \in S$. Prove that every set S with propery (j) has at most $m+n-1$ elements.

3 Find all pairs (m, n) of integer numbers $m, n>1$ with property that $m n-1 \mid n^{3}-1$.
44 Determine the maximum possible real value of the number k, such that

$$
(a+b+c)\left(\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}-k\right) \geq k
$$

for all real numbers $a, b, c \geq 0$ with $a+b+c=a b+b c+c a$.

