Romania Junior Balkan Team Selection Tests

Pitesti and Bucuresti 2007

Day 1-13 April 2007

1 Let us consider a, b two integers. Prove that there exists and it is unique a pair of integers (x, y) such that:

$$
(x+2 y-a)^{2}+(2 x-y-b)^{2} \leq 1
$$

2 Let $A B C D$ be a trapezium $(A B \| C D)$ and M, N be the intersection points of the circles of diameters $A D$ and $B C$. Prove that $O \in M N$, where $O \in A C \cap B D$.

53 A rectangularly paper is divided in polygons areas in the following way: at every step one of the existing surfaces is cut by a straight line, obtaining two new areas. Which is the minimum number of cuts needed such that between the obtained polygons there exists 251 polygons with 11 sides?

Romania Junior Balkan Team Selection Tests

Pitesti and Bucuresti 2007

Day 2-14 April 2007

1 Find the positive integers n with $n \geq 4$ such that $[\sqrt{n}]+1$ divides $n-1$ and $[\sqrt{n}]-1$ divides $n+1$.

2 Consider a convex quadrilateral $A B C D$. Denote M, N the points of tangency of the circle inscribed in $\triangle A B D$ with $A B, A D$, respectively and P, Q the points of tangency of the circle inscribed in $\triangle C B D$ with the sides $C D, C B$, respectively. Assume that the circles inscribed in $\triangle A B D, \triangle C B D$ are tangent. Prove that:
a) $A B C D$ is circumscriptible.
b) $M N P Q$ is cyclic.
c) The circles inscribed in $\triangle A B C, \triangle A D C$ are tangent.

3 Let $A B C$ an isosceles triangle, P a point belonging to its interior. Denote M, N the intersection points of the circle $\mathcal{C}(A, A P)$ with the sides $A B$ and $A C$, respectively.
Find the position of P if $M N+B P+C P$ is minimum.

Romania Junior Balkan Team Selection Tests

Pitesti and Bucuresti 2007

Day 3

1 Let $A B C$ a triangle and M, N, P points on $A B, B C$, respective $C A$, such that the quadrilateral $C P M N$ is a paralelogram. Denote $R \in A N \cap M P, S \in B P \cap M N$, and $Q \in A N \cap B P$. Prove that $[M R Q S]=[N Q P]$.
2 Solve in positive integers: $\left(x^{2}+2\right)\left(y^{2}+3\right)\left(z^{2}+4\right)=60 x y z$.
3 Consider a $n x n$ table such that the unit squares are colored arbitrary in black and white, such that exactly three of the squares placed in the corners of the table are white, and the other one is black. Prove that there exists a $2 x 2$ square which contains an odd number of unit squares white colored.

4 Let a, b, c three positive reals such that

$$
\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1} \geq 1
$$

Show that

$$
a+b+c \geq a b+b c+c a .
$$

Romania Junior Balkan Team Selection Tests

Pitesti and Bucuresti 2007

Day 4

11 Find all nonzero subsets A of the set $\{2,3,4,5, \cdots\}$ such that $\forall n \in A$, we have that $n^{2}+4$ and $\lfloor\sqrt{n}\rfloor+1$ are both in A.

2 Let w_{1} and w_{2} be two circles which intersect at points A and B. Consider w_{3} another circle which cuts w_{1} in D, E, and it is tangent to w_{2} in the point C, and also tangent to $A B$ in F. Consider $G \in D E \cap A B$, and H the symetric point of F w.r.t G. Find $\angle H C F$.

53 Consider the numbers from 1 to 16 . The quot;solitarquot; game consists in the arbitrary grouping of the numbers in pairs and replacing each pair with the great prime divisor of the sum of the two numbers (i.e from $(1,2) ;(3,4) ;(5,6) ; \ldots ;(15,16)$ the numbers which result are $3,7,11,5,19,23,3,31$). The next step follows from the same procedure and the games continues untill we obtain only one number. Which is the maximum numbers with which the game ends.

44 Find all integer positive numbers n such that: $n=[a, b]+[b, c]+[c, a]$, where a, b, c are integer positive numbers and $[p, q]$ represents the least common multiple of numbers p, q.

Day 5

1 Consider ρ a semicircle of diameter $A B$. A parallel to $A B$ cuts the semicircle at C, D such that $A D$ separates B, C. The parallel at $A D$ through C intersects the semicircle the second time at E. Let F be the intersection point of the lines $B E$ and $C D$. The parallel through F at $A D$ cuts $A B$ in P. Prove that $P C$ is tangent to ρ.

Author: Cosmin Pohoata
2 Let $x, y, z \geq 0$ be real numbers. Prove that:

$$
\frac{x^{3}+y^{3}+z^{3}}{3} \geq x y z+\frac{3}{4}|(x-y)(y-z)(z-x)| .
$$

Additional task: Find the maximal real constant α that can replace $\frac{3}{4}$ such that the inequality is still true for any non-negative x, y, z.

3 At a party there are eight guests, and each participant can't talk with at most three persons. Prove that we can group the persons in four pairs such that in every pair a conversation can take place.

44 We call a set of points free if there is no equilateral triangle with the vertices among the points of the set. Prove that every set of n points in the plane contains a free subset with at least \sqrt{n} elements.

Romania Junior Balkan Team Selection Tests

Pitesti and Bucuresti 2007

Day 6

1 Consider an 8×8 board divided in 64 unit squares. We call diagonal in this board a set of 8 squares with the property that on each of the rows and the columns of the board there is exactly one square of the diagonal. Some of the squares of this board are coloured such that in every diagonal there are exactly two coloured squares. Prove that there exist two rows or two columns whose squares are all coloured.

2 There are given the integers $1 \leq m<n$. Consider the set $M=\left\{(x, y) ; x, y \in \mathbb{Z}_{+}, 1 \leq x, y \leq\right.$ $n\}$. Determine the least value $v(m, n)$ with the property that for every subset $P \subseteq M$ with $|P|=v(m, n)$ there exist $m+1$ elements $A_{i}=\left(x_{i}, y_{i}\right) \in P, i=1,2, \ldots, m+1$, for which the x_{i} are all distinct, and y_{i} are also all distinct.

53 Let $A B C$ be a right triangle with $A=90^{\circ}$ and $D \in(A C)$. Denote by E the reflection of A in the line $B D$ and F the intersection point of $C E$ with the perpendicular in D to $B C$. Prove that $A F, D E$ and $B C$ are concurrent.

4 We call a real number x with $0<x<1$ interesting if x is irrational and if in its decimal writing the first four decimals are equal. Determine the least positive integer n with the property that every real number t with $0<t<1$ can be written as the sum of n pairwise distinct interesting numbers.

