Romania Team Selection Tests

 Iasi and Bucharest 2006

 Iasi and Bucharest 2006}

Day 1-19 April 2006

1 Let $A B C$ and $A M N$ be two similar triangles with the same orientation, such that $A B=A C$, $A M=A N$ and having disjoint interiors. Let O be the circumcenter of the triangle $M A B$. Prove that the points O, C, N, A lie on the same circle if and only if the triangle $A B C$ is equilateral.

Valentin Vornicu
2 Let p a prime number, $p \geq 5$. Find the number of polynomials of the form

$$
x^{p}+p x^{k}+p x^{l}+1, \quad k>l, \quad k, l \in\{1,2, \cdots, p-1\},
$$

which are irreducible in $\mathbb{Z}[X]$.
Valentin Vornicu
4 The real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are given such that $\left|a_{i}\right| \leq 1$ for all $i=1,2, \ldots, n$ and $a_{1}+$ $a_{2}+\cdots+a_{n}=0$.
a) Prove that there exists $k \in\{1,2, \ldots, n\}$ such that

$$
\left|a_{1}+2 a_{2}+\cdots+k a_{k}\right| \leq \frac{2 k+1}{4} .
$$

b) Prove that for $n>2$ the bound above is the best possible.

Radu Gologan, Calin Popescu

This file was downloaded from the AoPS - MathLinks Math Olympiad Resources Page http://www.artofproblemsolving.com/ Page 1 http://www.mathlinks.ro/

Romania Team Selection Tests

Day 2-20 April 2006
(1) Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence with $a_{1}=1, a_{2}=4$ and for all $n>1$,

$$
a_{n}=\sqrt{a_{n-1} a_{n+1}+1} .
$$

a) Prove that all the terms of the sequence are positive integers.
b) Prove that $2 a_{n} a_{n+1}+1$ is a perfect square for all positive integers n.

Valentin Vornicu
2 Let $A B C$ be a triangle with $\angle B=30^{\circ}$. We consider the closed disks of radius $\frac{A C}{3}$, centered in A, B, C. Does there exist an equilateral triangle with one vertex in each of the 3 disks?

Radu Gologan
3 For which pairs of positive integers (m, n) there exists a set A such that for all positive integers x, y, if $|x-y|=m$, then at least one of the numbers x, y belongs to the set A, and if $|x-y|=n$, then at least one of the numbers x, y does not belong to the set A ?
A.M.M.

4 Let $x_{i}, 1 \leq i \leq n$ be real numbers. Prove that

$$
\sum_{1 \leq i<j \leq n}\left|x_{i}+x_{j}\right| \geq \frac{n-2}{2} \sum_{i=1}^{n}\left|x_{i}\right| .
$$

Romania

 Team Selection TestsDay 3-16 May 2006

1 The circle of center I is inscribed in the convex quadrilateral $A B C D$. Let M and N be points on the segments $A I$ and $C I$, respectively, such that $\angle M B N=\frac{1}{2} \angle A B C$. Prove that $\angle M D N=\frac{1}{2} \angle A D C$.

2 Let A be point in the exterior of the circle \mathcal{C}. Two lines passing through A intersect the circle \mathcal{C} in points B and C (with B between A and C) respectively in D and E (with D between A and E). The parallel from D to $B C$ intersects the second time the $\operatorname{circle} \mathcal{C}$ in F. Let G be the second point of intersection between the circle \mathcal{C} and the line $A F$ and M the point in which the lines $A B$ and $E G$ intersect. Prove that

$$
\frac{1}{A M}=\frac{1}{A B}+\frac{1}{A C}
$$

53 Let γ be the incircle in the triangle $A_{0} A_{1} A_{2}$. For all $i \in\{0,1,2\}$ we make the following constructions (all indices are considered modulo 3): γ_{i} is the circle tangent to γ which passes through the points A_{i+1} and $A_{i+2} ; T_{i}$ is the point of tangency between γ_{i} and γ; finally, the common tangent in T_{i} of γ_{i} and γ intersects the line $A_{i+1} A_{i+2}$ in the point P_{i}. Prove that
a) the points P_{0}, P_{1} and P_{2} are collinear;
b) the lines $A_{0} T_{0}, A_{1} T_{1}$ and $A_{2} T_{2}$ are concurrent.

54 Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that:

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \geq a^{2}+b^{2}+c^{2}
$$

Romania Team Selection Tests

Day 4-19 May 2006

1 Let r and s be two rational numbers. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that for all $x, y \in \mathbb{Q}$ we have

$$
f(x+f(y))=f(x+r)+y+s
$$

2 Find all non-negative integers m, n, p, q such that

$$
p^{m} q^{n}=(p+q)^{2}+1 .
$$

53 Let $n>1$ be an integer. A set $S \subset\{0,1,2, \ldots, 4 n-1\}$ is called rare if, for any $k \in$ $\{0,1, \ldots, n-1\}$, the following two conditions take place at the same time
(1) the set $S \cap\{4 k-2,4 k-1,4 k, 4 k+1,4 k+2\}$ has at most two elements;
(2) the set $S \cap\{4 k+1,4 k+2,4 k+3\}$ has at most one element.

Prove that the set $\{0,1,2, \ldots, 4 n-1\}$ has exactly $8 \cdot 7^{n-1}$ rare subsets.
4 Let p, q be two integers, $q \geq p \geq 0$. Let $n \geq 2$ be an integer and $a_{0}=0, a_{1} \geq 0, a_{2}, \ldots, a_{n-1}, a_{n}=$ 1 be real numbers such that

$$
a_{k} \leq \frac{a_{k-1}+a_{k+1}}{2}, \forall k=1,2, \ldots, n-1
$$

Prove that

$$
(p+1) \sum_{k=1}^{n-1} a_{k}^{p} \geq(q+1) \sum_{k=1}^{n-1} a_{k}^{q} .
$$

Romania Team Selection Tests

Day 5-20 May 2006

1 Let n be a positive integer of the form $4 k+1, k \in \mathbb{N}$ and $A=\left\{a^{2}+n b^{2} \mid a, b \in \mathbb{Z}\right\}$. Prove that there exist integers x, y such that $x^{n}+y^{n} \in A$ and $x+y \notin A$.

2 Let m and n be positive integers and S be a subset with $\left(2^{m}-1\right) n+1$ elements of the set $\left\{1,2,3, \ldots, 2^{m} n\right\}$. Prove that S contains $m+1$ distinct numbers $a_{0}, a_{1}, \ldots, a_{m}$ such that $a_{k-1} \mid a_{k}$ for all $k=1,2, \ldots, m$.

53 Let $x_{1}=1, x_{2}, x_{3}, \ldots$ be a sequence of real numbers such that for all $n \geq 1$ we have

$$
x_{n+1}=x_{n}+\frac{1}{2 x_{n}} .
$$

Prove that

$$
\left\lfloor 25 x_{625}\right\rfloor=625 .
$$

4 Let $A B C$ be an acute triangle with $A B \neq A C$. Let D be the foot of the altitude from A and ω the circumcircle of the triangle. Let ω_{1} be the circle tangent to $A D, B D$ and ω. Let ω_{2} be the circle tangent to $A D, C D$ and ω. Let ℓ be the interior common tangent to both ω_{1} and ω_{2}, different from $C D$.
Prove that ℓ passes through the midpoint of $B C$ if and only if $2 B C=A B+A C$.

