Romania Junior Balkan Team Selection Tests
 Bistrita and Bucharest 2005

Day 1-31 March 2005

11 Let $\mathcal{C}_{1}\left(O_{1}\right)$ and $\mathcal{C}_{2}\left(O_{2}\right)$ be two circles which intersect in the points A and B. The tangent in A at \mathcal{C}_{2} intersects the circle \mathcal{C}_{1} in C, and the tangent in A at \mathcal{C}_{1} intersects \mathcal{C}_{2} in D. A ray starting from A and lying inside the $\angle C A D$ intersects the circles $\mathcal{C}_{1}, \mathcal{C}_{2}$ in the points M and N respectively, and the circumcircle of $\triangle A C D$ in P.
Prove that $A M=N P$.
2 Find the largest positive integer $n>10$ such that the residue of n when divided by each perfect square between 2 and $\frac{n}{2}$ is an odd number.

53 In a country 6 cities are connected two by two with round-trip air routes operated by exactly one of the two air companies in that country.
Prove that there exist 4 cities A, B, C and D such that each of the routes $A \leftrightarrow B, B \leftrightarrow C$, $C \leftrightarrow D$ and $D \leftrightarrow A$ are operated by the same company.

Dan Schwartz

Romania Junior Balkan Team Selection Tests
 Bistrita and Bucharest 2005

Day 2-01 April 2005

4 Let a, b, c be positive numbers such that $a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that

$$
a+b+c \geq \frac{3}{a b c} .
$$

5 On the sides $A D$ and $B C$ of a rhombus $A B C D$ we consider the points M and N respectively. The line $M C$ intersects the segment $B D$ in the point T, and the line $M N$ intersects the segment $B D$ in the point U. We denote by Q the intersection between the line $C U$ and the side $A B$ and with P the intersection point between the line $Q T$ and the side $C D$.
Prove that the triangles $Q C P$ and $M C N$ have the same area.
6 Let $A B C$ be an equilateral triangle and M be a point inside the triangle. We denote by A^{\prime}, B^{\prime}, C^{\prime} the projections of the point M on the sides $B C, C A$ and $A B$ respectively. Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent if and only if M belongs to an altitude of the triangle.

Romania Junior Balkan Team Selection Tests

Day 3-19 April 2005

7 A phone company starts a new type of service. A new customer can choose k phone numbers in this network which are call-free, whether that number is calling or is being called. A group of n students want to use the service.
(a) If $n \geq 2 k+2$, show that there exist 2 students who will be charged when speaking.
(b) It $n=2 k+1$, show that there is a way to arrange the free calls so that everybody can speak free to anybody else in the group.

Valentin Vornicu
8 Let a, b, c be three positive reals such that $(a+b)(b+c)(c+a)=1$. Prove that the following inequality holds:

$$
a b+b c+c a \leq \frac{3}{4}
$$

Cezar Lupu
9 Let $A B C$ be a triangle with $B C>C A>A B$ and let G be the centroid of the triangle. Prove that

$$
\angle G C A+\angle G B C<\angle B A C<\angle G A C+\angle G B A .
$$

Dinu Serbanescu
10 Let $k, r \in \mathbb{N}$ and let $x \in(0,1)$ be a rational number given in decimal representation

$$
x=0 . a_{1} a_{2} a_{3} a_{4} \ldots
$$

Show that if the decimals $a_{k}, a_{k+r}, a_{k+2 r}, \ldots$ are canceled, the new number obtained is still rational.

Dan Schwarz

Romania Junior Balkan Team Selection Tests

Bistrita and Bucharest 2005

Day 4-23 May 2005

11 Three circles $\mathcal{C}_{1}\left(O_{1}\right), \mathcal{C}_{2}\left(O_{2}\right)$ and $\mathcal{C}_{3}\left(O_{3}\right)$ share a common point and meet again pairwise at the points A, B and C. Show that if the points A, B, C are collinear then the points Q, O_{1}, O_{2} and O_{3} lie on the same circle.

12 Find all positive integers n and p if p is prime and

$$
n^{8}-p^{5}=n^{2}+p^{2} .
$$

Adrian Stoica
13 The positive integers from 1 to n^{2} are placed arbitrarily on the n^{2} squares of a $n \times n$ chessboard. Two squares are called adjacent if they have a common side. Show that two opposite corner squares can be joined by a path of $2 n-1$ adjacent squares so that the sum of the numbers placed on them is at least $\left\lfloor\frac{n^{3}}{2}\right\rfloor+n^{2}-n+1$.

Radu Gologan

14 Let a, b, c be three positive real numbers with $a+b+c=3$. Prove that

$$
(3-2 a)(3-2 b)(3-2 c) \leq a^{2} b^{2} c^{2} .
$$

Robert Szasz

Romania Junior Balkan Team Selection Tests

Bistrita and Bucharest 2005

Day 5-24 May 2005

15 Let $n>3$ be a positive integer. Consider n sets, each having two elements, such that the intersection of any two of them is a set with one element. Prove that the intersection of all sets is non-empty.

16 Let $A B$ and $B C$ be two consecutive sides of a regular polygon with 9 vertices inscribed in a circle of center O. Let M be the midpoint of $A B$ and N be the midpoint of the radius perpendicular to $B C$. Find the measure of the angle $\angle O M N$.

17 A piece of cardboard has the shape of a pentagon $A B C D E$ in which $B C D E$ is a square and $A B E$ is an isosceles triangle with a right angle at A. Prove that the pentagon can be divided in two different ways in three parts that can be rearranged in order to recompose a right isosceles triangle.

18 Consider two distinct positive integers a and b having integer arithmetic, geometric and harmonic means. Find the minimal value of $|a-b|$.

Mircea Fianu

