THE 22 ${ }^{\text {nd }}$

BALKAN MATHEMATICAL OLYMPIAD
Iaşi - May $6^{\text {th }}, 2005$

Language: English

Problem 1. Let $A B C$ be an acute-angled triangle whose inscribed circle touches $A B$ and $A C$ at D and E respectively. Let X and Y be the points of intersection of the bisectors of angles $\angle A C B$ a̧nd $\angle A B C$ with the line $D E$ and let Z be the midpoint of $B C$. Prove that the triangle $X Y Z$ is equilateral if and only if $\angle B A C=60^{\circ}$.

Problem 2. Find all primes p such that $p^{2}-p+1$ is a perfect cube.

Problem 3. Let a, b, c be positive real numbers. Prove the inequality

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \geq a+b+c+\frac{4(a-b)^{2}}{a+b+c} .
$$

When does equality occur?

Problema 4. Let $n \geq 2$ be an integer. Let S be a subset of $\{1,2, \ldots, n\}$ such that S neither contains two elements one of which divides the other, nor contains two elements which are coprime. What is the maximal possible number of elements of such a set S ?

Timp de lucru: $4 \frac{1}{2}$ ore

