
IOI’2005
Tasks and Solutions

Nowy Sącz, 2005



Authors:

Szymon Acedánski
Piotr Chrząstowski
Mathias Hiron
Łukasz Kowalik
Marcin Kubica
Tomasz Malesínski
Anna Niewiarowska
Krzysztof Onak
Pavel Pankov
Arkadiusz Paterek
Jakub Pawlewicz
Jakub Radoszewski
Piotr Stánczyk
Marcin Stefaniak
Tom Verhoeff
Szymon Wąsik

Cover:

Wojciech Rygielski

Typesetting:

Tomasz Walén

Proofreaders:

Szymon Acedánski
Marcin Kubica
Tomasz Walén

Volume editor:

Marcin Kubica

c© Copyright by Komitet Główny Olimpiady Informatycznej
Ośrodek Edukacji Informatycznej i Zastosowań Komputerów
ul. Nowogrodzka 73, 02-018 Warszawa

ISBN 83–917700–9–5



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Tasks and Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Divisor game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Domino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Polish Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Garden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Mean Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Mountains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Birthday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Rectangle Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Rivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37





Tom Verhoeff, Marcin Kubica

Preface

The International Olympiad in Informatics (IOI) is an annual competition for talented students from secondary
education all over the world. This booklet contains the main material of the IOI 2005 competition.

The IOI 2005 competition was prepared and executed by the Polish Olympiad in Informatics and the Institute of
Informatics of Warsaw University. IOI 2005 took place in Nowy Sącz, Poland, on the campus of the Nowy Sącz School
of Business — National Louis University, from 18 through 25 August 2005. There were two competition days preceded
with one practice day, with three competition tasks on each day. Over 280 contestants from 72 countries participated.

This booklet describes the preparation of the IOI 2005 competition, the tasks, the theory behind various solution
approaches. We hope that this booklet will prove to be useful to both organizers and participants of future IOIs. Additional
materials, including test data, are available at:http://www.ioi2005.pl.

Tom Verhoeff, ISC Chair
Marcin Kubica, HSC Chair

Nowy Sącz, Poland, 22 August 2005





Tom Verhoeff, Marcin Kubica

Introduction

It may be interesting to know a little bit about the preparation and execution of the IOI 2005 competition.
Task preparations started over a year before the actual competition. The IOI 2005 Host Scientific Committee (HSC)

sent out a Call for Tasks in October 2004. All externally submitted tasks have been collected until the end of the year. In
response, eight task proposals have been received. Additionally, HSC have prepared another seven tasks.

IOI competition tasks must satisfy, among others, the following requirements:

• they must be of an algorithmic nature,

• solutions must be implementable in Pascal, C, or C++,

• there should exist a variety of possible solutions, differing in difficulty and efficiency.

Collected proposals were further refined by the HSC, and 15 of the resulting tasks were reviewed by the IOI Scientific
Committee (ISC) in April 2005. The ISC selected 12 potential tasks for IOI 2005. Three of them were used as practice
tasks, six were used in the competition, and three more were available as backup tasks, in case some irreparable problem
did come to light after presentation to the General Assembly.

HSC have developed many programmed solutions in all allowed programming languages, extensive test data for all
the selected tasks, and appropriate time and memory limitations. This effort is necessary to distinguish various solutions.

The evaluation of the programs submitted by the contestants during the competition is based on a batch of carefully
designed test cases, each of which involves running the submitted program one or more times with different input data.
These test cases probe both the correctness of the submitted program and its time and memory efficiency. The number of
test cases varied between 20 and 24, depending on the task. The maximum score for each task was 100 points. Correct
but less efficient programs could obtain partial scores.

The IOI 2005 competition made use of the System for Internet Olympiads (SIO) developed by students of the Institute
of Informatics at Warsaw University. SIO is the fourth generation of grading systems developed by Polish Olympiad
in Informatics. They have been successfully used in various contests, also abroad, including: Polish Olympiad in
Informatics, Baltic Olympiad in Informatics, Central European Olympiad in Informatics and ACM Central European
Programming Contest. The current system was used for the first time at the Baltic Olympiad in Informatics in 2001,
which was organized in Poland.

If you have a good idea for a competition task, please consider submitting it to IOI 2006.
See you next year in Mexico.

Tom Verhoeff, ISC Chair
Marcin Kubica, HSC Chair

Nowy Sącz, Poland, 22 August 2005





Tasks and Solutions





Krzysztof Onak
Szymon Acedański
Task idea and formulation

Jakub Pawlewicz
Marcin Stefaniak

Analysis

Available memory: 32MB, Maximum running time: 1 s.

Divisor game

Alice and Bob invented a two-player game. At first, Alice chooses a positive integer k in the range from 1 to some fixed
integer n. Then Bob asks questions of the form ‘Is k divisible by m?’, where m is a positive integer. Alice answers each
such question with ‘yes’ or ‘no’. Bob wants to know what number Alice bears in mind by asking as few questions as possible.
Your task is to write a program, which plays the game as Bob.
Let us denote by d(n) the minimal number of questions, which have to be asked to find k, regardless of what k Alice

chooses (for given n). Your program’s answer for a test case will be considered correct, if k is correctly determined using
no more than d(n) questions.

Library

Your program must use a special library to play the game. The library consists of the files: alice.pas (for Pascal),
alice.h and alice.c (for C/C++). The library provides the following functionality:

• function get_n: longint / int get_n() — Your program should call this function to initialize a game, before it
calls any other function/procedure provided by the library. Function get_n returns n, the upper bound on the number
that Alice has in mind. Number n satisfies the limitations 1 6 n6 1 000 000 . Moreover, in 50% of test cases n
satisfies 1 6 n6 10 000 .

• function is_divisible_by(m: longint): boolean / int is_divisible_by(int m) — Your program may ask
questions by calling this function. Function is_divisible_by returns True/1 if the number k Alice has in mind is
divisible by m. Otherwise it returns False/0. The parameter m must satisfy 1 6m6 n. Your program should ask
as few questions as possible.

• procedure guess(k: longint) / void guess(int k) — To end the game your program should report the number
k Alice has in mind, by calling the procedure guess(k). The parameter k should satisfy 1 6 k 6 n. After calling
this procedure your program will be terminated automatically.

If your program makes an illegal call, it will be terminated.
Your program should communicate only by means of the above functions and procedures. Your program must not read

or write any files, it must not use standard input/output and it must not try to access any memory outside your program.

Compilation

If your program is written in Pascal, then you must include ‘uses alice;’ statement in your source code. To compile
your program, use the following command:
ppc386 -O2 -XS div.pas
If your program is written in C or C++, then you must include ‘#include "alice.h"’ statement in your source

code. To compile your program, use one of the following commands:
gcc -O2 -static div.c alice.c -lm
g++ -O2 -static div.cpp alice.c -lm

Experimentation

To let you experiment with your solution, you are given an example library playing as Alice: its sources are in alice.pas,
alice.h and alice.c files. When you run your program, it will be playing against this simple library. You can modify
this library, but please do not change the interface part of it. Please remember, that during the evaluation your program
will be playing against a different opponent.
When you submit your program using the TEST interface1, it will be compiled with the unmodified example opponent

library. The submitted input file will be given to your program’s standard input. The input file should consist of two lines,
each containing one integer. The first line should contain number n, and the second line should contain number k.
You are also provided with two simple programs illustrating usage of the library: div.c and div.pas. (Please remember,

that these programs are not correct solutions.)

1TEST interface will be available during the trial session.



12 Divisor game

Sample interaction

Below there is a sample interaction between a program and the library.

Your program calls What happens
get_n() returns 1 000
is_divisible_by(10) returns True/1
is_divisible_by(100) returns True/1
is_divisible_by(1000) returns False/0
is_divisible_by(200) returns False/0
is_divisible_by(500) returns False/0
is_divisible_by(300) returns False/0
is_divisible_by(700) returns False/0
guess(100) Alice’s secret number is 100. Your program wins and is

terminated automatically.

Solution

At first, let us consider a simpler version of the divisor game, in which Alice is restricted to choose ask either some prime
number or 1. In such a game a good strategy is to check whetherk is divisible by successive prime numbers. If we find a
prime divisorp of k, thenp must equalk. If k is not divisible by any primep 6 n, thenk must be 1. In the worst case we
have to ask as many questions as there are prime numbers less than or equaln. Let us denote this number byd(n). We
will show that in the original game, in the worst case, we need at mostd(n) questions, too.

Model solution

In model solution, we test consecutive primes (in the ascending order) whether they dividek. If k is divisible by some
prime p, we continue checking divisibility byp2, p3 and so on, until we get a negative answer. Moreover, we stop
checking divisibility for successive powers ofp as soon as a positive answer impliesk > n. For example, forn = 5, if 22

dividesk, thenk is neither divisible by 23, nor 3, nor 5.
It turns out that using the above strategy, we will never ask more questions thand(n). To prove this fact we will apply

Chebyshev’s theorem.

Theorem 1 If m is a positive integer, then there exists at least one such prime p, that

m+1 6 p 6 2·m

Now please note, that anytime we discover thatk is divisible by p, we can reduce the problem of findingk not greater
thann, to a smaller problem of finding suchk′ not greater thanb n

pc, thatk = k′ · p. Now observe, thatd(b n
pc) is strictly

smaller thand(n), because the interval[b n
pc+1,n] contains at least one prime. This follows from Chebyshev’s theorem

for the interval[bn
2c+1,2bn

2c], which is a subinterval of[b n
pc+1,n], sincep > 2. Therefore, by induction, we can findk′

using not more thand(b n
pc) 6 d(n)−1 questions. Moreover, all the negative answers obtained so far, are also negative

while looking fork′, so we do not need to ask them once again. So we need at mostd(n) questions to findk, because we
have just asked one to obtainp.

To implement the above method, one should generate the list of primes not exceedingn. This can be done using the
Eratosthenes sieve.

Alice’s evil strategy

The library playing as Alice, used during the evaluation, does not establish the secret number at the beginning of the
game. It adapts to Bob’s questions and tries to fixk as late as possible. This way, the library is increasing the number of
questions Bob has to ask to findk.

For each test case, the library is given an interval[l , r] of possible values ofk. For each question the library answers
‘no’ if only it is possible. It answers ‘yes’ only when the negative answer contradicts the previous answers or makesk
exceed the interval[l , r]. Additionally, for each test case (excluding the sample test) the limit on number of questions is
set tod(n).



Piotr Chrząstowski,
Anna Niewiarowska
Task idea and formulation

Szymon Acedánski,
Jakub Pawlewicz

Analysis

Available memory: 32MB, Maximum running time: 1 s.

Domino

You are given a chessboard of size n×m. There are also some lines drawn on it. Each line separates two adjacent fields.
You are going to put dominoes on the chessboard. Each domino covers two adjacent fields. You can put a domino on
two adjacent fields only if they are not separated by a line. Your task is to find such an arrangement of dominoes on the
chessboard, that each field is covered by exactly one domino. You can assume that for each input data there is a solution.

Task

This is an output-only task. This means, that you are given input files dom1.in, dom2.in, . . . , dom20.in. Your task is
to produce output files dom1.out, dom2.out, . . . , dom20.out. Your submission should comprise a single zip or tar-gzip
archive containing all the output files without any sub-directories. The format of input files, as well as the format of output
files, which you are to produce, is described below.

Input

The first line of an input file contains two integers, n and m, separated by a single space — n is the number of rows and
m is the number of columns of the chessboard, 1 6 n,m6 100 , n ·m is even. The fields of the chessboard are numbered
from 1 to n ·m. The i-th field (from the left) in the j-th row (from the top) has number ( j− 1) ·m+ i (for 1 6 i6m,
1 6 j 6 n).
The second line contains one positive integer l, 0 6 l 6 5000 . Each of the following l lines contains two integers

separated by a single space. The i+2-nd line contains integers pi and qi (for i= 1 , . . . , l), where 1 6 pi , qi 6 n ·m, pi and
qi are numbers of two adjacent fields. It represents a line between fields number pi and qi .

Output

A single output file should consist of n·m
2 lines describing an arrangement of the dominoes, one domino per line. Each of

these lines should contain two integers separated by a single space: numbers of two adjacent fields covered by a domino.
The dominoes may be described in any order. If there are several solutions, you should find any one of them.

Example

For the input data:
4 5
9
8 7
13 14
14 19
6 7
12 7
4 9
12 13
14 9
9 10
the correct result is:
3 4
1 6
2 7
8 9
5 10
14 15
11 16
12 17
13 18
19 20

1 2 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

3

1 2 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

3



Solution

Let G = (V1,V2,E) be an undirected bipartite graph. Amatchingin this graph is such a setM ⊆ E, that no two edges of
M have a common end. We say, that vertexv∈V is matchedin M if v is an end of some edge inM. If v is not matched,
then we say that it isfree. Moreover, we say, that a matchingM is perfect, if all vertices ofG are matched.

The problem of covering a chessboard with dominoes can be reduced to a problem of finding a perfect matching in
a bipartite graphG = (V1,V2,E), where vertices represent the chessboard fields — white fields formV1 and black fields
formV2. Two vertices are connected with an edge if they represent two adjacent fields not separated by a line (that is, both
of them can be covered using one domino). Such a graph hasn·m vertices andO(n·m) edges.

A matchingM in such a graph represents an arrangement of dominoes on the chessboard:i−j ∈M, if there is a domino
on the chessboard covering both fieldsi and j. As in a correct matching, where each vertex belongs to at most one edge,
in a correct covering each chessboard field must be covered by one domino. However, a matching does not necessarily
represent the covering of the whole chessboard. In fact, we have to find a perfect matching. This guarantees, that each
field is covered.

Backtracking solution

Quite simple, but very time-consuming method for finding a covering of the chessboard (or perfect matching in a graph)
is some kind of backtracking. It can be implemented in the following way: we start recursion with the empty chessboard.
Then, the recursive procedure performs the following steps:

1. Check whether the board is fully covered. If it is so, then write the solution and exit the program.

2. Pick any two free adjacent fieldsv andw not separated by a line.

3. Recursively search for a covering with new domino put on the fieldsv andw.

4. Recursively search for a covering with additional line drawn between fieldsv andw.

The running time of backtracking algorithms tend to depend strongly on applied optimizations. At first please note,
that if there is an empty field on the chessboard, which is already completely surrounded by covered fields or drawn lines,
then it is not possible to fully expand such covering. Therefore, in such a situation we can truncate the backtracking and
return from the recursive procedure immediately.

Another thing is to carefully design step 2. We will call a fieldw, adjacent tov, available, if w is not covered by a
domino, and ifv andw are not separated by a line. Of course, one can simply iterate over all fields on the chessboard and
pick the first one, which is is adjacent to an available field. A better idea is to choose suchv andw, thatv has a minimal
possible number of available adjacent fields. Using this heuristic, coverings which are not fully expandable, are often
quickly detected and eliminated.

Model solution

The typical matching algorithm, which finds not only a perfect matching, but more generally — amaximummatching, is
based on the idea ofaugmenting paths. A matching is called maximum if it contains the maximum possible number of
edges. Let us consider a matchingM in a bipartite graphG = (V1,V2,E). We call a vertexfree if it is not matched inM.
An augmenting pathin a bipartite graphG is a path with the following properties:

• it contains no loops,

• it starts in a free vertex inV1, ends in a free vertex inV2, and

• every even edge in the path belongs toM (it follows that no odd edge belongs toM).

If we remove fromM these edges that appear also on the augmenting path, and add those edges, which appear on the
augmenting path but are not inM, we get a matching containing one edge more. Now, if the matchingM is maximum, it
is obvious that there are no augmenting paths. The converse observation is not so trivial, but it is also true: if the matching
is not maximum, then there exists an augmenting path. This idea leads to an algorithm for finding a maximum matching:
one should keep searching for augmenting paths in the graph as long as there are any. If we use BFS to find augmenting
paths, the time complexity of our algorithm will beO

(
(n·m)2

)
.

There exists also an improved version of this method, known as the Hopcroft-Karp matching algorithm, which works
in O

(
(n·m)3/2

)
time complexity.



Pavel S. Pankov
Szymon Acedański
Task idea and formulation

Szymon Acedański
Jakub Pawlewicz

Analysis

Available memory: 64MB, Maximum running time: 2 s.

Polish Flag

Three children are building Polish flag from square blocks. The flag will be a rectangle, 3n blocks wide and 2n blocks high,
where n is a positive integer. It will consist of 3n2 white blocks and 3n2 red blocks. The children are going to lay blocks
on a rectangle table. There are 6n2 slots on the table. The white blocks should occupy the top n rows, and the red blocks
should occupy the bottom n rows. Rows are numbered from 1 to 2n from top to bottom. Columns are numbered from 1 to
3n from left to right.
The children are laying blocks in turns. In the first turn Lucy puts her block on the left edge at position ( 1 , l), Bob

puts his block on the bottom edge at position ( b,2n), Roy puts his block on the right edge at position ( 3n,r), where
1 6 l, r < 2n,1 < b < 3n.
Every next turn they lay blocks as follows. The child can put a block in a given slot only if the slot is empty and the

block to be put would be adjacent to one of the blocks put in the preceding turn. (Two blocks are adjacent if they have a
common side.) In a given turn the child puts as many blocks as possible. Only one block can be put into a single slot. If
two or more children want to put a block into the same slot in the same turn then the highest priority has Lucy, then Bob
and the lowest priority has Roy.
Before the children start building the flag they have to distribute blocks. Here is the problem. They don’t know how

many blocks of each color they need. Help the children and compute for each child the number of blocks of each color he/she
will use while building the flag.

Task

Write a program that:

• reads from standard input the number n and positions of the first blocks l, b, r,

• computes for each child the number of blocks of each color he/she should get to build the flag,

• writes the result to the standard output.

Input

The first and only line contains four integers n, l, b, r,
separated by single spaces, 1 6 n 6 1 000 000 000 ,1 6 l, r < 2n,1 < b < 3n. Additionally, in 50% of test cases n will
not exceed 100 .

Output

Output should consist of a single line containing six integers separated by single spaces. The first and the second integer
should be the number of white and red blocks respectively, which Lucy needs; the third and fourth number should be the
number of white and red blocks respectively, which Bob needs; the fifth and sixth number should be the number of white and
red blocks respectively, which Roy needs.

Example

For the input data:
2 2 3 1

the correct result is:
7 3 0 8 5 1



16 Polish Flag

��
��
��

��
��
��

�
�
�
� ���

���
���

���
���
���

��
��
��

��
��
��

�
�
�
�

��������
��������
��������

��������
��������
�����������
���
���

���
���
���

��
��
��

��
��
������
����
����

����
����
����

����������
����������
����������

����������
����������
��������������
����
����

����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

turn 1 turn 2 turn 3 turn 4

Lucy Bob Roy

�
�
�
� �

�
�
�

��
��
��
��

��
��
��

��
��
��

������
������
������

������
������
������



Polish Flag 17

Solution

Simple solutions

The simplest idea, how to solve this task, can be to implement an algorithm simulating the process of building the
flag, following the description given in the task. Such a solution works inO(n3) time complexity andO(n2) memory
complexity. Clearly, this is not sufficient to receive the full score, but only about 50%. There are also other faster,
although not optimal, solutions.

One can employ Breadth First Search (BFS) to reduce the time complexity of the simulation toO(n2). Initially, we
can put into a queue the starting slots (in order of the children’s priorities), and then run BFS to simulate the process of
building the flag.

Another idea, working inO(n2) time andO(1) memory, is to just iterate over all the slots, and to determine, whose
block will be in each of them. For a given slot, this can be calculated by comparing Manhattan distances1 to the children’s
starting points.

There is also anO(n) solution. At first, please observe, that in each row, its leftmost part (possibly empty) is covered
by Lucy’s blocks, then there may be some Bob’s blocks, and finally on the right there may be some Roy’s blocks. We
can iterate over the rows, and for each of them we can calculate the positions of the boundaries between the mentioned
parts. For the first (the bottommost) row, we can do it inO(n) time. Now, having these boundaries for the first row, we
can easily compute them for the next row too, because the new left boundary can either be in the same place as the old
one or moved to the right. Similarly, the right boundary can move only to the left. This procedure may be continued until
Bob’s part disappears. The time complexity of this phase isO(n).

When Bob’s part disappears, there is only one boundary and we can calculate its position inO(n) time. For all the
remaining rows the boundary can either be in the same place as the boundary in the previous row, or can move one place
to the right or to the left (depending on the relative vertical positions of Lucy’s starting slot, Roy’s starting slot and the
current row). This phase also takesO(n) time, so the total time complexity of the above algorithm isO(n).

There is another way to obtain anO(n) solution. Given a row, it is possible to calculate the boundaries inO(1) time
for this row, independently of the other rows. This can be done by determining in each row the rightmost slot that is not
further from Lucy’s starting slot than from Bob’s starting slot (and similarly such a slot for Bob and Roy, and for Lucy
and Roy) — these computations require only simple arithmetic and case decomposition. Using these positions, it is easy
to calculate how many slots belong to Lucy, Bob and Roy in each row.

Model solution

The model solution works inO(1) time and memory complexity. It explicitly calculates shapes of the regions covered by
Lucy’s, Bob’s and Roy’s blocks. We will show how to determine Bob’s region (the other two are calculated analogically).
At first, observe, that this region is a figure bounded by theX axis and some discrete function, let us call itflag function.
Moreover, the domain of this function can be divided into intervals such that, in each interval, the function is either
constant or is an arithmetic progression with common difference 1 or−1. An example is shown in Figure 1.

� �
� �
� �
� � � � � �

� � � �
� � � �
� � �
� � �
� � �

��� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�

	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	


Fig. 1: An example flag function determining the boundary of Bob’s region

Now let us imagine, that Roy does not exist. We have only two children, as depicted in Figure 2a. With two children,
the flag function always consists of up to three intervals. We can determine them and corresponding function shapes in
O(1) time by considering a number of simple cases.
Please note, that this flag function would consist of up to three intervals too, if we had left Bob and Roy only (see
Figure 2b).

Having flag functions for Bob and Lucy as well as for Bob and Roy, we can compute the final flag function, which
bounds Bob’s blocks, as a minimum of these two flag functions. Finally, having this, calculating the appropriate numbers
of needed blocks inO(1) time and memory is not very difficult. A similar method can be used to count Lucy’s and Roy’s
blocks.

1The Manhattan distance between two points is a sum of the absolute differences between their respective coordinates:
d((x1,y1),(x2,y2)) = |x2−x1|+ |y2−y1|.



18 Polish Flag

�������������������
�������������������
�������������������
�������������������

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� �
� �
� �
� � � �� �

	 	 	
	 	 	
	 	 	


 
 


 
 


 
 


�����������������������
�����������������������
���������������������
���������������������

�
�
�
�
�
�
�


�
�
�
�
�
�
�


�
�
�
�
�
�
�


���������������
���������������
���������������

(a) (b)

Fig. 2: An example flag function determining the boundary between regions filled with (a) Lucy’s and Bob’s blocks and
(b) Bob’s and Roy’s bocks



Mathias Hiron
Szymon Acedański
Task idea and formulation

Szymon Acedański, Łukasz Kowalik
Marcin Stefaniak

Analysis

Available memory: 32MB, Maximum running time: 0.5 s.

Garden

Byteman owns the most beautiful garden in Bytetown. He planted n roses in his garden. Summer has come and the
flowers have grown big and beautiful. Byteman has realized that he is not able to take care of all the roses on his own. He
has decided to employ two gardeners to help him. He wants to select two rectangular areas, so that each of the gardeners
will take care of the roses inside one area. The areas should be disjoint and each should contain exactly k roses.
Byteman wants to make a fence surrounding the rectangular areas, but he is short of money, so he wants to use as

little fence as possible. Your task is to help Byteman select the two rectangular areas.
The garden forms a rectangle l meters long and w meters wide. It is divided into l ·w squares of size 1 meter × 1 meter

each. We fix a coordinate system with axes parallel to the sides of the garden. All squares have integer coordinates (x,y)
satisfying 1 6 x6 l, 1 6 y 6 w. Each square may contain any number of roses.
The rectangular areas, which must be selected, should have their sides parallel to the sides of the garden and the squares

in their corners should have integer coordinates. For 1 6 l1 6 l2 6 l and 1 6w1 6w2 6w, a rectangular area with corners
( l1,w1), ( l1,w2), ( l2,w1) and ( l2,w2):

• contains all the squares with coordinates (x,y) satisfying l1 6 x6 l2 and w1 6 y 6 w2, and

• has perimeter 2 · ( l2− l1+1)+ 2 · (w2−w1+1).

The two rectangular areas must be disjoint, that is they cannot contain a common square. Even if they have a common
side, or part of it, they must be surrounded by separate fences.

Task

Write a program, that:

• reads from the standard input the dimensions of the garden, the number of roses in the garden, the number of roses
that should be in each of the rectangular areas, and the positions of the roses,

• finds the corners of two such rectangular areas with minimum sum of perimeters that satisfy the given conditions,

• writes to the standard output the minimum sum of perimeters of two non-overlapping rectangular areas, each
containing exactly the given number of roses (or a single word NO, if no such pair of areas exists).

Input

The first line of standard input contains two integers: l and w (1 6 l,w 6 250) separated by a single space — the length
and the width of the garden. The second line contains two integers: n and k (2 6 n6 5000 , 1 6 k6 n/2) separated by a
single space — the number of roses in the garden and the number of roses that should be in each of the rectangular areas.
The following n lines contain the coordinates of the roses, one rose per line. The ( i+2)-nd line contains two integers li ,
wi (1 6 li 6 l, 1 6 wi 6 w) separated by a single space — the coordinates of the square containing the i-th rose. Two or
more roses can occur in the same square.
In 50% of test cases, the dimensions of the garden will satisfy l,w6 40 .

Output

The standard output should contain only one line with exactly one integer — the minimum sum of perimeters of two
non-overlapping rectangular areas, each containing exactly k roses, or a single word NO, if no such pair of areas exists.



20 Garden

Example

For the input data:
6 5
7 3
3 4
3 3
6 1
1 1
5 5
5 5
3 1
the correct result is:
22

1 2 3 4 5 6

1

2

3

4

5

Solution

Let us call a rectangular region containing exactlyk roses ak-rectangle. Let us also denote byrx,y the number of roses in
the square(x,y). The problem is to find two disjointk-rectangles with minimal sum of perimeters.

The simplest solution is to consider all possible rectangular regions of the garden, and for each of them to count the
number of roses inside. This way we can enumerate allk-rectangles inO(w3 · l3) time. There may be up toO(w2 · l2)
k-rectangles in total. The second step is to consider all the pairs ofk-rectangles and choose the one consisting of disjoint
regions with minimum sum of perimeters. Such a solution should receive about 50 % points, despite its terrible time
complexity ofO(w4 · l4).

Model solution

Now we will present a number of gradual improvements, which will finally yield us the model solution. Please note, that
we can optimize checking if a given rectangular region is ak-rectangle. Let us denote byRx,y the number of roses in a
region, with one corner at(1,1) and the opposite one at(x,y). We can precompute all the values ofRx,y iteratively in
O(w · l) time using the following formula:

Rx,y =
{

0 if x = 0 ory = 0
Rx−1,y +Rx,y−1−Rx−1,y−1 + rx,y otherwise

Having this, we can expressR (x1,y1,x2,y2) — the number of roses in a rectangular region with corners(x1,y1) and
(x2,y2) as:

R (x1,y1,x2,y2) = Rx2,y2 −Rx2,y1−1−Rx1−1,y2 +Rx1−1,y1−1

This way,R (x1,y1,x2,y2) can be evaluated inO(1) time. Using the presented method, we can enumerate allk-rectangles
in O(w2 · l2) time. Unfortunately, this does not solve the problem of considering all pairs ofk-rectangles.

But fortunately, there is another method, which copes with this problem. Please observe, that if we have two disjoint
rectangular regions, then there must exist either a horizontal or a vertical line such that one rectangle is above it (or
respectively to the left) and the other one is below it (or respectively to the right). Hence, for each horizontal line we can
find twok-rectangles with the smallest perimeters, laying on the opposite sides of the line. Similar values are to be found
for all vertical lines. When we have done this, we can easily compute the final result inO(w+ l) by considering all the
possible dividing lines and choosing the result which gives us the optimal sum of perimeters.

Now we will show how to find optimal perimeters for the first case (rectangular regions above the given horizontal
line). The three other cases can be solved analogously. Let us denote byAy the minimal perimeter ofk-rectangle laying
above the horizontal line with the giveny-coordinate, whose bottommost coordinate is greater than or equaly. Let us also
denote byay the minimal perimeter of thek-rectangle with bottommost coordinate equaly. Please note, that:

Ay = min(ay, . . . ,aw)

A simple way to calculateai ’s is to initially set them to infinity, and then update them while iterating through allk-
rectangles. With this improvement our algorithm works inO(w2 · l2) time.

This is not all. Please note, that we do not need to considerall k-rectangles. We can limit our considerations to those
k-rectangles, which do not contain any otherk-rectangles in their interiors. To enumerate all interestingk-rectangles (and
maybe some not interesting too), we consider all pairs(y1,y2), 1 6 y1 6 y2 6 w. For each such pair, we use asliding
window, which is a rectangle having corners at(x1,y1) and(x2,y2). At the beginning,x1 = x2 = 1. Then we repeatedly
move the sliding window according to the following rules, untilx2 > l :



Garden 21

• if there are exactlyk roses in the sliding window (i.e.R (x1,y1,x2,y2) = k), then we have found a newk-rectangle;
after updating the four constructed sequences (ai and the three other analogous sequences),x1 is incremented by
one,

• if R (x1,y1,x2,y2) < k thenx2 is incremented by one, to expand the sliding window,

• if R (x1,y1,x2,y2) > k thenx1 is incremented by one, to shrink the sliding window,

The above algorithm works inO(w2 · l) time, and enumerates (among others) all interestingk-rectangles. Of course, we
can reduce its running time toO(w · l ·min(w, l)) by adapting the direction, in which this method works.

The presented solution, with all the above optimizations, constitutes the model solution.





Tom Verhoeff
Szymon Acedánski
Task idea and formulation

Szymon Acedánski
Jakub Radoszewski

Analysis

Available memory: 16MB, Maximum running time: 5 s.

Mean Sequence
Consider a nondecreasing sequence of integers s1, . . . ,sn+1 (si 6 si+1 for 1 6 i6 n). The sequence m1, . . . ,mn defined by
mi = 1

2( si + si+1), for 1 6 i6 n, is called the mean sequence of sequence s1, . . . ,sn+1. For example, the mean sequence
of sequence 1, 2, 2, 4 is the sequence 1.5, 2, 3. Note that elements of the mean sequence can be fractions. However, this
task deals with mean sequences whose elements are integers only.
Given a nondecreasing sequence of n integers m1, . . . ,mn, compute the number of nondecreasing sequences of n+ 1

integers s1, . . . ,sn+1 that have the given sequence m1, . . . ,mn as mean sequence.

Task
Write a program that:

• reads from the standard input a nondecreasing sequence of integers,

• calculates the number of nondecreasing sequences, for which the given sequence is mean sequence,

• writes the answer to the standard output.

Input
The first line of the standard input contains one integer n (2 6 n6 5 000 000). The remaining n lines contain the sequence
m1, . . . ,mn. Line i+ 1 contains a single integer mi (0 6mi 6 1 000 000 000). You can assume that in 50% of the test
cases n6 1 000 and 0 6mi 6 20 000 .

Output
Your program should write to the standard output exactly one integer — the number of nondecreasing integer sequences,
that have the input sequence as the mean sequence.

Example

For the input data:
3
2
5
9

the correct result is:
4

Indeed, there are four nondecreasing integer sequences for which 2 ,5 ,9 is the mean sequence. These sequences are:
• 2 ,2 ,8 ,10 ,

• 1 ,3 ,7 ,11 ,

• 0 ,4 ,6 ,12 ,

• −1 ,5 ,5 ,13 .

Solution

At first, observe that the definition of mean sequence can be applied to any sequence, not onlynondecreasingsequences.
If we drop the condition that sequences1, . . . ,sn+1 is nondecreasing, then fixing a singlesi fixes the entire sequence, given
its mean sequencem1, . . . ,mn. Let us define thereflectionoperationr on integera with respect to centerc as follows:
r(a,c) = b if and only if 1

2(a+b) = c; that is,r(a,c) = 2c−a. If si is fixed, thensi+1 = r(si ,mi) andsi−1 = r(si ,mi−1), etc.
Hence, there exist an infinite number of sequencess1, . . . ,sn+1 that have the given sequencem1, . . . ,mn as mean sequence
— one for each choice ofs1.

There is a finite number of nondecreasing sequences though. A simple upper bound on the number of possible
nondecreasing sequences may bem2−m1 + 1, which is the number of integers betweenm1 andm2 (inclusive). This is
becauses2 must satisfym1 6 s2 6 m2. Indeed, ifs2 < m1 thens1 > m2 and therefores2 < s1 so the sequence is not
nondecreasing. Similarly, ifs2 > m2 thens3 < m2 giving a sequence which is not nondecreasing either. This way we can
construct a solution, which tests all the possible values ofs2 lying betweenm1 andm2, and for each suchs2 it computes
the rest of the sequence and then checks if it is nondecreasing. Such a solution works inO(n(m2−m1 +1)) time and can
be implemented withO(n) or betterO(m2−m1 +1) memory complexity.



24 Mean Sequence

Optimal solution

Before we present the model solution, a following definition will be useful. Let us call a valuev feasiblefor si in the given
sequence, when there exists an nondecreasing sequences1, . . . ,sn+1 with si = v and mean sequencem1, . . . ,mn. Now we
need an important observation.

Observation 1 If, for some i, values a and b with a6 b are feasible for si , then every c in the interval[a,b] is feasible for
si .

The actual number of nondecreasing sequencess1, . . . ,sn+1 can be obtained by generalizing the problem as follows.
Given a nondecreasing sequencem1, . . . ,mn, determine theintervalof feasible values forsn+1. The answer is then the size
of that interval.

In the model solution the interval of feasible values ofsn+1 is computed inductively. We start with the casen = 0.
In this case, the interval of feasible values fors1 consists of all integers:(−∞,+∞). Now let [a,b] be the interval for
nondecreasing sequencess1, . . . ,sn+1 having mean sequencem1, . . . ,mn. Let us consider the mean sequencem1, . . . ,mn

extended by a new elementmn+1 > mn. This reduces the possible values forsn+1 to the interval[a,min(b,mn+1)], and
hence the interval forsn+2 is the reflection of this interval, that is,[r(min(b,mn+1),mn+1), r(a,mn+1)]. We consider
interval [a,b] as empty ifa > b, and otherwise it containsb−a+1 elements. This way we obtainO(n) time complexity
andO(1) memory complexity solution, because there is no need to store the entire sequence in memory. Intervals of
feasible values can be computed while reading the input data.

There are also some suboptimal solutions, which use different methods of determining the interval of feasible values
for sn+1. One idea would be to use binary search. Even though this can result in an algorithm withO(nlogn) time
complexity, it will needO(n) memory, what is too much to pass the largest tests.



Jakub Pawlewicz
Anna Niewiarowska
Task idea and formulation

Szymon Acedański, Arkadiusz Paterek
Jakub Pawlewicz

Analysis

Available memory: 256MB, Maximum running time: 3 s.

Mountains

The Mountain Amusement Park has opened a brand-new simulated roller coaster. The simulated track consists of n rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Byteman, the operator, can reconfigure the
track at will by adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is
not affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates two example track reconfigurations.
Each ride is initiated by launching the car with sufficient energy to reach height h. That is, the car will continue to

travel as long as the elevation of the track does not exceed h, and as long as the end of the track is not reached.
Given the record for all the day’s rides and track configuration changes, compute for each ride the number of rails

traversed by the car before it stops.
Internally, the simulator represents the track as a sequence of n elevation changes, one for each rail. The i-th number

di represents the elevation change (in centimetres) over the i-th rail. Suppose that after traversing i−1 rails the car has
reached an elevation of h centimetres. After traversing i rails the car will have reached an elevation of h+ di centimetres.
Initially the rails are horizontal; that is, di = 0 for all i. Rides and reconfigurations are interleaved throughout the day.

Each reconfiguration is specified by three numbers: a, b and D. The segment to be adjusted consists of rails a through b
(inclusive). The elevation change over each rail in the segment is set to D. That is, di = D for all a6 i6 b.
Each ride is specified by one number h — the maximum height that the car can reach.

Task

Write a program that:

• reads from the standard input a sequence of interleaved reconfigurations and rides,

• for each ride computes the number of rails traversed by the car,

• writes the results to the standard output.

Input

The first line of input contains one positive integer n — the number of rails, 1 6 n6 1 000 000 000 . The following lines
contain reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

• Reconfiguration — a single letter ‘I’, and integers a,b and D, all separated by single spaces (1 6 a 6 b 6 n,
−1 000 000 000 6D6 1 000 000 000).

• Ride — a single letter ‘Q’, and an integer h (0 6 h6 1 000 000 000) separated by a single space;

• A single letter ‘E’ — the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval [ 0 ,1 000 000 000] centimetres.
The input contains no more than 100 000 lines.
In 50% of test cases n satisfies 1 6 n6 20 000 and there are no more than 1 000 lines of input.

Output

The i-th line of output should consist of one integer — the number of rails traversed by the car during the i-th ride.

Example

For the input data:
4
Q 1
I 1 4 2
Q 3
Q 1
I 2 2 -1
Q 3
E

the correct result is:
4
1
0
3



26 Mountains

0
1
2
3

2

0
1
2
3
4
5
6

2

7
8

2

2

2

4

6

8

0 00 0 0 0 00

2
1

3

5

0
1
2
3
4
5
6

2 −1
2

2

1 2 3 4

1 2 3 4

1 2 3 4

Views of the track before and after each reconfiguration. The x axis denotes the rail number. The y axis and the numbers
over points denote elevation. The numbers over segments denote elevation changes.

Solution

At the beginning, let us denote byI the number of input lines starting with letter ‘I’ (i.e. reconfigurations). Similarly, let
Q be the number of rides.

Simple solutions

One possible simple, although not optimal, solution is to represent the trail as a vectorA, whereA[i] denotes the elevation
after thei-th rail. The complexity of processing a reconfiguration (we call this operation insertion) isO(n). Single query
about a ride also takesO(n), so the total time complexity isO((I +Q) ·n). Moreover, memory complexity isO(n) which
is far too high to not exceed the memory limit in large test cases.

Another simple approach is to represent the track as a sorted list of disjoint intervals such that throughout each interval,
the difference of elevation over every rail is the same. This way we have insertion and query complexity ofO(I), so the
entire solution isO((I +Q) · I). Memory complexity isO(I).

Model solution

A data structure used in the model solution is a binary tree. Each of its nodes describes an interval (i.e. a number of
consecutive rails)J =

[
2kt,2k(t +1)

)
, for some integersk andt. The information contained in the node is

• SJ = ∑i∈J di

• HJ = max
(
{0}∪

{
∑2kt6i6 j di : j ∈ J

})
The node is a leaf if all the valuesdi are equal. In this case computingSJ andHJ is trivial. Otherwise, the node has two
sons, with assigned intervalsJ1 =

[
2k−1(2t),2k−1(2t +1)

)
andJ2 =

[
2k−1(2t +1),2k−1(2t +2)

)
. In this caseSJ andHJ

are computed asSJ = SJ1 +SJ2 andHJ = max{HJ1,SJ1 +HJ2}. The root of the tree represents the interval
[
0,2dlog2 ne

)
.

The key operation is reconfiguration of the track. It requires inserting or modifying at most 2dlog2ne nodes into the
tree. Similarly, processing a query about a ride requires traversing at mostdlog2ne nodes. Therefore, such a solution has
time complexity ofO((I +Q) · logn) and memory complexityO(I · logn).



Mountains 27

Even better solution

We are not required to process the input line by line. Instead, we can read in the entire input and know in advance, which
parts of the track will be reconfigured at all. LetM be a sorted vector of the ends of all the intervals contained in all the
I-records of the input. We can also assume, that the length ofM is some power of 2 (if not, we extendM by adding some
large values).

Now we use a tree very similar to the one described in the previous section. The difference is, that each node describes
an intervalI =

[
M[2kt],M[2k(t +1)]

)
. We can store such a tree in a single vector, just like in the standard implementation

of a heap. Since the size ofM is O(I), so the total time complexity isO((I +Q) · logI) and memory complexity is reduced
to O(I +Q).





Jakub Pawlewicz
Task idea and formulation

Szymon Acedánski, Piotr Stańczyk
Analysis

Available memory: 32MB, Maximum running time: 2 s.

Birthday
It is Byteman’s birthday today. There are n children at his birthday party (including Byteman). The children are
numbered from 1 to n. Byteman’s parents have prepared a big round table and they have placed n chairs around the table.
When the children arrive, they take seats. The child number 1 takes one of the seats. Then the child number 2 takes the
seat on the left. Then the child number 3 takes the next seat on the left, and so on. Finally the child number n takes the
last free seat, between the children number 1 and n−1 .
Byteman’s parents know the children very well and they know that some of the children will be noisy, if they sit too close

to each other. Therefore the parents are going to reseat the children in a specific order. Such an order can be described by
a permutation p1,p2, . . . ,pn (p1,p2, . . . ,pn are distinct integers from 1 to n) — child p1 should sit between pn and p2, child
pi (for i= 2 ,3 , . . . ,n−1) should sit between pi−1 and pi+1, and child pn should sit between pn−1 and p1. Please note, that
child p1 can sit on the left or on the right from child pn.
To seat all the children in the given order, the parents must move each child around the table to the left or to the right

some number of seats. For each child, they must decide how the child will move — that is, they must choose a direction of
movement (left or right) and distance (number of seats). On the given signal, all the children stand up at once, move to
the proper places and sit down.
The reseating procedure throws the birthday party into a mess. The mess is equal to the largest distance any child

moves. The children can be reseated in many ways. The parents choose one with minimum mess. Help them to find such
a way to reseat the children.

Task

Your task is to write a program that:

• reads from the standard input the number of the children and the permutation describing the desired order of the
children,

• determines the minimum possible mess,

• writes the result to the standard output.

Input

The first line of standard input contains one integer n (1 6 n 6 1 000 000). The second line contains n integers
p1,p2, . . . ,pn, separated by single spaces. Numbers p1,p2, . . . ,pn form a permutation of the set {1 ,2 , . . . ,n} describing
the desired order of the children. Additionally, in 50% of the test cases, n will not exceed 1 000.

Output

The first and the only line of standard output should contain one integer: the minimum possible mess.

Example

For the input data:
6
3 4 5 1 2 6

the correct result is:
2

1
2

3
4

5

6
2

1

5
4

3

6
2

6

3
4

5

1

The left figure shows the initial arrangement of the children. The middle figure shows the result of the following reseating:
children number 1 and 2 move one place, children number 3 and 5 move two places, and children number 4 and 6 do not
change places. The conditions of arrangement are fulfilled, since 3 sits between 6 and 4, 4 sits between 3 and 5, 5 sits
between 4 and 1, 1 sits between 5 and 2, 2 sits between 1 and 6, and 6 sits between 2 and 3. There exists another possible
final arrangement of children, depicted in the right figure. In both cases no child moves more than two seats.



30 Birthday

Solution

The task is to find such an arrangement of the children, that the maximum number of seats any child has to be moved is
minimized. At first we should note, that there are two classes of possible final arrangements. For example, if we have a
permutation(1,2,3), then child 1 can be either a left-hand-side or a right-hand-side neighbour of child 2. The first case
will be calledcounterclockwisearrangement, the second will be calledclockwise. In both cases calculations are similar,
therefore we will only consider clockwise arrangements. Contestants have to consider both cases and choose the smaller
result.

Simple solution

The first idea may be to perform simulations of all possible rearrangements. Let us fix the position of the first child. Now,
using the given permutation, we can calculate the final positions (and also the distances of movements) of all the children
in O(n) time complexity. Since we have to perform this step for all the possible positions of the first child, the total time
complexity isO(n2).

Optimal solution

There exists a better solution. We denote by(pi) the given permutation of the children. Let us consider a final arrangement
of the children, where the final position of childp1 is f . To achieve this arrangement, some (maybe all) of the children
have to move. We can describe the movement of childi by a numberd f

i , where|d f
i | is the distance of movement, it

is positive if the child moves clockwise, and negative if the child moves counterclockwise. Moreover, we assume, that
the children always choose such a direction of movement, that the distance is smaller than in other direction (or choose
clockwise if both distances are equal), that is 1−

⌈
n
2

⌉
6 d f

i 6
⌊

n
2

⌋
.

Let Sf = {d f
i : i = 1,2, . . . ,n}. We can treatSf as an alternative representation of the considered rearrangement.

Having this representation, we can easily calculate the maximum movement distance using formula:

Rf = max(−min(Sf ),max(Sf ))

Values ofd f
i depend on the given permutation(pi) and f . They can be characterized by the following formula:

d f
pi

= min(a,n−a) where a = ( f + i−1− pi) modn

Moreover, given some representationSf , we can easily computeSf+1 by “shifting” all elements ofSf (i.e. we replacex
by x+1 if x <

⌊
n
2

⌋
and we replace

⌊
n
2

⌋
by 1−

⌈
n
2

⌉
).

Now we are interested in calculating the smallest possible result for allf ’s. Please note, that all the representations
Sf are shifts of one base representation, sayS0. Let us denote byC the maximum number of consecutive (modulon)
elements from

{
1−

⌈
n
2

⌉
, . . . ,

⌊
n
2

⌋}
not appearing inS0. It can be calculated in a linear time.

The result is equal
⌊

n−C
2

⌋
. This gives us an algorithm withO(n) time complexity.



Jakub Radoszewski, Marcin Kubica
Task idea and formulation

Szymon Wąsik
Analysis

Available memory: 32MB, Maximum running time: 14 s.

Rectangle Game

We consider a two-player game. The players are given an x× y rectangle (where x and y are positive integers). The
players take turns moving. A move consists of dividing a rectangle into two rectangles with a single vertical or horizontal
cut. The resulting rectangles must have positive integer dimensions.

2

1 2 3

1

Possible cuts of a 4 ×3 rectangle.

After each cut, the smaller rectangle (that is the one with smaller area) is discarded and the other one is passed to the
other player. If the rectangle is cut into two equal halves, then one half is discarded. The player who receives a 1 × 1
rectangle, and therefore is not able to make a move, loses the game.
Your task is to write a program to play and win the rectangle game. The program must use a special library to play

the game. The library provides you with functions dimension_x() and dimension_y() that return the dimensions of the
rectangle. Initial dimensions of the rectangle are integers from 1 to 100 000 000 . At least one dimension is greater than
1 . Moreover, in 50% of test cases the dimensions do not exceed 25.
There is also a procedure cut(dir, position), that is called by your program to make moves. Parameters dir and

position describe the direction and the position of a cut respectively. The parameter dir must be one of the two values:
vertical or horizontal. If dir = vertical then the cut is vertical, and the parameter position specifies the x-
coordinate of the cut (see the figure above) and you must ensure that 1 6 position 6 dimension_x() −1 . If dir =
horizontal, then the cut is horizontal and the parameter position specifies the y-coordinate of the cut and you must
ensure that 1 6 position 6 dimension_y() −1 .
When your program is started, it will act as one player for one game. Your program plays first — it must cut

the initial rectangle. When your program calls the cut procedure, your move is recorded and control is passed to your
program’s opponent. After the opponent moves, control returns to your program. Values returned by dimension_x() and
dimension_y() will reflect the result of your move and your opponent’s move. As soon as your program wins, loses or
makes an illegal move (i.e. calls the cut procedure with invalid parameters) it will be terminated. Termination of your
program is an automatic process, so your program should keep making moves as long as possible. You can assume that for
the test data, there always exists a winning strategy for your program.
Your program must not read or write any files, it must not use standard input/output, and it must not try to modify

any memory outside your program. Violating any of these rules may result in disqualification.

Experimentation

To let you experiment with the library, you are given example opponent libraries: their sources are in preclib.pas,
creclib.c and creclib.h files. The library can be downloaded from http://contest/. They implement a very simple
strategy. When you run your program, it will be playing against these simple players. Feel free to modify them, and test
your program against a better opponent. However, during the evaluation, your program will be playing against a different
opponent.
When you submit your program using the TEST interface it will be compiled with the unmodified example opponent

library. The submitted input file will be given to your program standard input. The input file should consist of two lines,
each containing one integer. The first line should contain the initial width, and the second line should contain the initial
height of the rectangle. These dimensions are read by the example opponent library.
If you modify the implementation part of the preclib.pas library, please recompile it using the following command:

ppc386 -O2 preclib.pas. This command produces files preclib.o and preclib.ppu. These files are needed to compile
your program, and should be placed in the directory, where your program is located. Please do not modify the interface part
of the preclib.pas library.
If you modify the creclib.c library, please remember to place it (together with creclib.h) in the directory, where

your program is located — they are needed to compile it. Please do not modify the creclib.h file.



32 Rectangle Game

You are also provided with two simple programs illustrating usage of the above libraries: crec.c and prec.pas. (Please
remember, that these programs are not correct solutions.) You can compile them using the following commands:

gcc -O2 -static crec.c creclib.c -lm
g++ -O2 -static crec.c creclib.c -lm
ppc386 -O2 -XS prec.pas

Library

You are given a library providing the following functionality:

• FreePascal Library (preclib.ppu, preclib.o)

type direction = (vertical, horizontal);
function dimension_x(): longint;
function dimension_y(): longint;
procedure cut(dir: direction; position: longint);

Include the following statement in your source file rec.pas:
uses preclib;
To compile your program, copy the files preclib.o and preclib.ppu to the directory, where your source file is
placed and run the following command:
ppc386 -O2 -XS rec.pas

File prec.pas gives an example of how to use the preclib library.



Rectangle Game 33

• GNU C/C++ Library (creclib.h, creclib.c)

typedef enum __direction {vertical, horizontal} direction;
int dimension_x();
int dimension_y();
void cut(direction dir, int position);

Include the following statement in your source file (rec.c or rec.cpp):
#include ’’creclib.h’’
To compile your program, copy the files creclib.c and creclib.h to the directory, where your source file is placed
and run the following command:
gcc -O2 -static rec.c creclib.c -lm
or:
g++ -O2 -static rec.cpp creclib.c -lm

The file crec.c gives an example of how to use the library in C.

Sample interaction

Below there is a sample interaction between your program and the judging library. It shows how a sample game can proceed.
The game starts with a 4 ×3 board. There exists a winning strategy for this position.

Your program calls What happens
dimension_x() returns 4
dimension_y() returns 3
cut(vertical, 1) your cut is recorded and a 3 ×3 board is passed to

your opponent, who cuts it to a 3 ×2 board; after
this, control is passed back to your program

dimension_x() returns 3
dimension_y() returns 2
cut(horizontal, 1) your cut is recorded and a 3 ×1 board is passed to

your opponent, who cuts it to a 2 ×1 board; after
this, control is passed back to your program

dimension_x() returns 2
dimension_y() returns 1
cut(vertical, 1) your cut gives a 1 × 1 board, so you win; your

program is terminated automatically

Solution

The key to the solution is to find the characterization of winning and losing positions. The first step to do it can be
preparation of a chart depicting the distribution of winning and losing positions. Such a chart is shown in Figure 1.
After a short analysis of the chart, we can observe the following fact:

Lemma 1 A n×m rectangle is a losing position if and only if there exists such integer k, that:

m+1 = 2k · (n+1) (1)

We will prove lemma 1 by induction on the rectangle area.

1. Let us assume thatn andm fulfill the condition (1) fork = 0, that isn = m. We can prove that such a position is
losing, using simple induction onn:

(a) If n = 1 then the position is losing by the definition of the game.

(b) Let us assume thatn > 1 and that the first player makes a move producing an× l rectangle, wheren2 6 l < n.
Then his opponent can reduce the rectangle tol × l , which is a losing position.

2. Let us assume thatn andm fulfill the condition (1) fork 6= 0. Without the loss of generality, we can assume that
k > 0, becausem+1 = 2k · (n+1) is equivalent ton+1 = 2−k · (m+1). The first player can cut the rectangle in
two possible directions:



34 Rectangle Game

x-dimension
1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
y 1 * . * . . . * . . . . . . . * . . . . .
| 2 . * . . * . . . . . * . . . . . . . . .
d 3 * . * . . . * . . . . . . . * . . . . .
i 4 . . . * . . . . * . . . . . . . . . * .
m 5 . * . . * . . . . . * . . . . . . . . .
e 6 . . . . . * . . . . . . * . . . . . . .
n 7 * . * . . . * . . . . . . . * . . . . .
s 8 . . . . . . . * . . . . . . . . * . . .
i 9 . . . * . . . . * . . . . . . . . . * .
o 10 . . . . . . . . . * . . . . . . . . . .
n 11 . * . . * . . . . . * . . . . . . . . .
12 . . . . . . . . . . . * . . . . . . . .
13 . . . . . * . . . . . . * . . . . . . .
14 . . . . . . . . . . . . . * . . . . . .
15 * . * . . . * . . . . . . . * . . . . .
16 . . . . . . . . . . . . . . . * . . . .
17 . . . . . . . * . . . . . . . . * . . .
18 . . . . . . . . . . . . . . . . . * . .
19 . . . * . . . . * . . . . . . . . . * .
20 . . . . . . . . . . . . . . . . . . . *

Fig. 1: A chart depicting winning and losing situations. The latter ones are marked with stars.

(a) Let us assume, that after the first cut we have al ×m rectangle, wheren2 6 l < n. Sincen = 2k(m+ 1)−1,
we have 2k−1(m+ 1)− 1 < l < 2k(m+ 1)− 1. Hence, the second player can reduce the rectangle to
2k−1(m+1)−1×m, which is a losing position for the first player.

(b) Let us assume, that after the first cut we have an× l rectangle, wherem2 6 l < m. We have to show that
n 6= 2i(l +1)−1 for all integer values ofi.

We will prove it by contradiction — let us assume, thatn = 2i(l +1)−1 for some integeri. Sincel < m, we
haven = 2i(l +1)−1 < 2i(m+1)−1, and hencei > k.

On the other hand, sincem2 6 l , we have:

n = 2i(l +1)−1 > 2i(
m
2

+1)−1 = 2i−1(m+2)−1 > 2i−1(m+1)−1

So,i−1 < k, and hencei < k+1.

We have obtained a contradiction. No integeri can satisfyk < i < k+1. Therefore,n× l is a winning position.

From the above we obtain thatn×m is a losing position.

3. Let us assume thatn andm do not fulfill the above condition. Then, log2(
n+1
m+1) is not an integer. Without the loss

of generality, we can assume thatn > m. Let us denote byl the following value:

l = 2blog2( n+1
m+1)c(m+1)−1

We haven+1
2 < l +1 < n+1, and from this we obtainn2 6 l < n. So, the first player can cut a rectangle reducing it

to l ×m, which is a losing position for the second player.

The model solution follows the proof of the lemma and for every winning position it finds the appropriate move in
logarithmic time. However the number of moves can be linear. For example, for a rectangle 2i×2(i +1) the only winning
move is to reduce it to 2i×2i. So, the worst-case time complexity of the solution isO(nlogn).

Alternative solutions

The backtracking (mini-max) solution checking recursively every move is the expected simplest solution which should
score half of the points.



Rectangle Game 35

Other solutions are based on dynamic programming. For each position(n,m) we can compute whether it is losing or
winning one. Simple dynamic programming solution can check all possible moves for a given position(n,m). This leads
to O(n3) time complexity.

There is also a faster dynamic programming solution, which stores the greatestn′ < n andm′ < m for which (n′,m)
and(n,m′) are losing positions. That way we may find the optimal move for a given position inO(1) time, which results
in O(n2) time complexity.





Łukasz Kowalik
Task idea and formulation

Łukasz Kowalik, Tomasz Malesiński
Analysis

Available memory: 32MB, Maximum running time: 1 s.

Rivers

Nearly all of the Kingdom of Byteland is covered by forests and rivers. Small rivers meet to form bigger rivers, which
also meet and, in the end, all the rivers flow together into one big river. The big river meets the sea near Bytetown.
There are n lumberjacks’ villages in Byteland, each placed near a river. Currently, there is a big sawmill in Bytetown

that processes all trees cut in the Kingdom. The trees float from the villages down the rivers to the sawmill in Bytetown.
The king of Byteland decided to build k additional sawmills in villages to reduce the cost of transporting the trees downriver.
After building the sawmills, the trees need not float to Bytetown, but can be processed in the first sawmill they encounter
downriver. Obviously, the trees cut near a village with a sawmill need not be transported by river. It should be noted
that the rivers in Byteland do not fork. Therefore, for each village, there is a unique way downriver from the village to
Bytetown.
The king’s accountants calculated how many trees are cut by each village per year. You must decide where to build the

sawmills to minimize the total cost of transporting the trees per year. River transportation costs one cent per kilometre,
per tree.

Task

Write a program that:

• reads from the standard input the number of villages, the number of additional sawmills to be built, the number of
trees cut near each village, and descriptions of the rivers,

• calculates the minimal cost of river transportation after building additional sawmills,

• writes the result to the standard output.

Input

The first line of input contains two integers: n — the number of villages other than Bytetown (2 6 n6 100), and k — the
number of additional sawmills to be built (1 6 k 6 50 and k 6 n). The villages are numbered 1 ,2 , . . . ,n, while Bytetown
has number 0.
Each of the following n lines contains three integers, separated by single spaces. Line i+1 contains:

• wi — the number of trees cut near village i per year (0 6 wi 6 10 000),

• vi — the first village (or Bytetown) downriver from village i (0 6 vi 6 n),

• di — the distance (in kilometres) by river from village i to vi (1 6 di 6 10 000).

It is guaranteed that the total cost of floating all the trees to the sawmill in Bytetown in one year does not exceed
2 000 000 000 cents.
In 50% of test cases n will not exceed 20.

Output

The first and only line of the output should contain one integer: the minimal cost of river transportation (in cents).

Example

For the input data:
4 2
1 0 1
1 1 10
10 2 5
1 2 3
the correct result is:
4

5

101 3

0 2

4

3

1

Bytetown

1

1 1

10



38 Rivers

The above picture illustrates the example input data. Village numbers are given inside circles. Numbers below the circles
represents the number of trees cut near villages. Numbers above the arrows represent rivers’ lengths.
The sawmills should be built in villages 2 and 3.

Solution

Notation

It is not hard to observe that since for each village there is a unique way down the river from the village to Bytetown,
we can treat the rivers and villages as a tree with the root in Bytetown. Nodes of the tree correspond to the villages (for
convenience we will refer to Bytetown as a village too), and nodev is the parent of nodeu whenv is the first village
downriver fromu.

Let r denote the root of the tree, i.e.r corresponds to Bytetown. By depth(u) we will denote the number of edges on a
unique path fromu to r. Clearly, the values of depth(u) can be computed for all villagesu in linear time. The number of
children of nodeu will be denoted by deg(u), and the number of trees cut near villageu will be denoted by trees(u).

Dynamic Programming

We can apply dynamic programming to solve the task. LetAv,t,l denote the minimal cost of transportation of the trees cut
in the subtree rooted inv, assuming thatt additional sawmills can be built in the subtree, and the trees not processed inv
can be processed in the village of depthl (on the way fromv to Bytetown). We compute values ofAv,t,l for each village
v, and such numberst, l , that 06 t 6 k and 06 l < depth(v). Clearly, when the tree rooted inv has at mostt nodes, then
Av,t,l = 0, as we can simply place a sawmill in every village. We can use the following formula:

Av,t,l =
{

0 when the tree rooted inv has at mostt nodes,
min(A′

v,t,l ,A
′′
v,t) otherwise, (1)

whereA′
v,t,l is the cost of transportation when there is no sawmill inv, andA′′

v,t is the cost of transportation when there is
one. These costs depend on the distribution of sawmills between subtrees rooted in children ofv. Let d = deg(v) and let
v1,v2, . . . ,vd be the children ofv. Then:

A′
v,t,l = trees(v) · (depth(v)− l)+ min

t1+...+td=t

d

∑
i=1

Avi ,ti ,l , (2)

A′′
v,t = min

t1+...+td=t−1

d

∑
i=1

Avi ,ti ,depth(v). (3)

Dynamic Programming One More Time

Let us have a closer look at the recurrences (2) and (3). We do not need to consider every partition oft into a sum of deg(v)
terms, to compute the values ofA′ andA′′. It would be time-consuming in case of trees containing vertices with many
children. Once again, we can use dynamic programming. LetBi,s

v,l denote the cost of transporting the trees cut in subtrees
rooted inv1,v2, . . . ,vi provided thatsadditional sawmills can be built in these subtrees and the trees not processed in these
subtrees are processed in a village of depthl . We can make use of the following recurrence:

B0,s
v,l = 0,

Bi,s
v,l = min

06 j6s
(Bi−1,s− j

v,l +Avi , j,l ) for eachs= 1, . . . ,k. (4)

We defineCi,s
v analogously, but this time we assume that the trees not processed in the subtrees are processed inv. Then

C0,s
v = 0,

Ci,s
v = min

06 j6s
(Ci−1,s− j

v,l +Avi , j,depth(v)) for eachs= 1, . . . ,k. (5)

Obviously,A′
v,t,l = Bdeg(v),t

v,l andA′′
v,t = Cdeg(v),t−1

v . In order to compute all values ofA′
v,t,l (respectivelyA′′

v,t ), for some

l ∈ {0, . . . ,depth(v)}, we computeBi,s
v,l (respectivelyCi,s

v ) for eachi = 0, . . . ,deg(v) ands= 0, . . . ,k. It follows that for

each pairv, l it takesO(k2(deg(v)+1)) time to compute valuesBi,s
v,l andCi,s

v , giving total time:

O(n∑
v

k2(deg(v)+1)) = O(k2n2),

since∑vdeg(v) is equal to the number of edges in the tree, i.e.n−1. After computing all values ofAv,t,l the program
returnsA′(r,k,0) as the final answer.



Rivers 39

Too Much Dynamic Programming

Using dynamic programming twice would not be required if all the vertices in the tree had small number of children.
Fortunately, we can easily construct a binary tree of villages that has the same minimal cost of transportation as the
original one. In order to do this we connect the first child of each vertex to the parent as its left child, create additional
village and connect it as a right child to the parent. Then we connect the other children of the parent vertex in the original
tree one by one, each time connecting a child as a left child of the additional village created during connecting the previous
child, creating a new additional village and connecting it as a right child of the previous one. Additional villages produce
no wood and rivers connecting them to parents are of length 0, so they do not affect the total cost of transportation.
Building sawmills in additional villages does not allow to lower the minimal cost of transportation, because every sawmill
built in an additional village can be moved to the next non-additional village on the way to Bytetown without raising (and
even possibly lowering) the total cost.

There aret +1 partitions oft into a sum of 2 non-negative terms. For each pairv, l we can therefore computeAv,t,l for
all t in O(k2) time. There are twice as many vertices in the binary tree as in the original one. The total computation time
is:

O(n∑
v

k2) = O(k2n2).

One River

It is worth noting, that in the special case, where instead of a tree of rivers there is just one river with multiple villages,
the problem is significantly simplified and can be solved more efficiently. In such a case we can use simple dynamic
programming. Let us number the villages from 1 ton upstream. For each villagev, and for each number of sawmillsq
(0 6 q 6 k) let us denote byT[v,q] the optimal cost of locatingq sawmills in the part of the river downstream fromv. The
value ofT[v,q] can be computed inO(v) time: we check allv possibilities of placing the upstream-most sawmill using
stored values ofT[1,q−1], . . . ,T[v−1,q−1]. Such an algorithm works inO(k ·n2) time.

A special case of such a problem — for just two sawmills — appeared at CEOI 2004, but the upper bound onn was
much bigger:n 6 20000. This required at least anO(n · logn) algorithm, which did not use dynamic programming, but
was based on divide and conquer technique instead. There exists also a solution running in linear time, iterating over all
possible locations of the uppermost sawmill and finding the optimal location of the other sawmill in amortized constant
time.


