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Problem 1. Let A be a 101-clement subset of the set § = {1,2

there exist numbers £, ta, ..., tigo in S such that the sets

Aj={z+t|zed), j=12...,100

are pairwise disjoint.

Solution 1-1. Consider the set D = {z —y | 2,y € A}. There are at most 101 x 100 +1 =
10101 elements in D. Two sets A + ¢ and A + ¢; have nonempty intersection if and only if
t;—t; is in D. So we need to choose the 100 elements in such a way that we do not use a
difference from D.

Now sclect these elements by induction. Choose one element arbitrarily. Assume that
k clements, k < 99, are already chosen. An element z that is already chosen prevents us
from selecting any element from the set z + D. Thus after k elements are chosen, at most
10101k < 999999 elements are forbidden. Hence we can select one more element.

Comment 1. The size |S] = 10° is unnecessarily large. The following statement is true:

If A i a k-element subset of § = {1,...,n} and m is a positive integer such
that n > (m — 1)((%) + 1), then there exist #,,...,tm € S such that the sets
Aj={z+t;|x €A}, j=1,...,m are pairwise disjoint.

Solution 1-2.  We give a solution to the generalised version.
Consider the set B = {|z—y| | z,y € A}. Clearly, |B| < (§) +1.
It suffices to prove that there exist ty,..., t € S such that |t; — ;| ¢ B for every distinct
i and j. We will select 1, ..., t inductively.
Choose 1 as ¢, and consider the set Cy = §\(B-+t,). Then we have |G| > n—((5)+1) >
(m=2)(() +1)-
For 1 < i < m, suppose that ¢y, ..., & and C; are already defined and that |C}| >
1)((§) +1) > 0. Choose the least element in C; as t;4; and consider the set

Clearly, t ..., t satisfy the desired condition.



[image: image2.jpg]Problem 2. Determine all pairs of positive integers (a,5) such that

WP - +1
is a positive integer.

Solufion 2. Let (a,b) be a pair of positive integers satisfying the condition. Because k =
a?/(2ab? — b +1) > 0, we have 2ab* — b+1> 0, a > b/2—1/25?, and hence a > b/2. Using
this, we infer from & > 1, or a? > b%(2a — b) + 1, that a® > b*(2a — b) > 0. Hence

a>b or 2a=b. (=)

Now consider the two solutions a1, a to the equation
o — 2kt%a + K —1) =0 ®

for fixed positive integers k and b, and assume that one of them is an integer. Then the
other is also an integer because a; + @y = 2kb%. We may assume that a; > a,, and we have
a1 > ki > 0. Furthermore, since aya; = k(5* — 1), we get

kB -1) k(b“—l)<b

<@;=
b "

Together with (+), we conclude that a; = 0 or a, = b/2 (in the latter case b must be even).
If a = 0, then b* — 1 =0, and hence a; = 2k,
If ap = b/2, then k = b%/4 and a) = 4*/2 — b/2.
Therefore the only possibilities are

(a,0)=(21,1) or (L,2)) or (81'-1,21)
for some positive integer I Al of these pairs satisfy the given condition.

Comment2-1. An alternative way to see () is as follows: Fix a > 1 and consider the
function f,(b) = 2a8°— b+ 1. Then f, is increasing on [0, 4a/3] and decreasing on [4a/3, ).
We have

fol@)=a®+1>a%,
ful2a-1)=4a"-4a+2>d’,
Ja(2a+1) =40 — 42 < 0.

Hence if b > a and a?/f.(b) is a positive integer, then b = 2a.

Indeed, if @ < b < 4a/3, then fu(b) > fu(a) > a* and so a*/f,(b) is not an integer, a
contradiction, and if b > da/3, then
(i) 6> 2a+1, then fu(b) < fal2a+1) < 0, a contradiction;

(i) ifb < 2 —1, then fu(b) > fu(2a — 1) > a2, and so a?//o(b) is not an integer, a
contradiction.




[image: image3.jpg]Comment2-2. There are several alternative solutions to this problem. Here we sketch three
of them.
1. The discriminant D of the equation (3) is the square of some integer d > 0: D =
(26%k — b)? + 4k — b2 = &, If e = 2%k — b = d, we have 4k = b” and a = 20k — b/2,b/2.
Otherwise, the clear estimation |d® — ¢2| > 2e—1 for d # e implies [4k — b?| > 4b%k —2b— 1.
If 4k — b? > 0, this implies b = 1. The other case yields no solutions.
2. Assume that b # 1 and let s = ged(2a,5°—1), 2a = su, *—1 = st’, and 2ab*—5°+1 = st.
Then t + = ub? and ged(u,) = 1. Together with st | a?, we have £ | s. Let s = ri. Then
the problem reduces to the following lemma:

Lemma. Let b, 7, t, ¢, u be positive integers satisfying b* — 1 = rt¢’ and ¢ +¢' = ub’.

‘Then 7 = 1. Furthermore, either one of  or ' or u is 1.

The lemma is proved as follows. We have 5° — 1 = ré(ub® — t) = r#/(ub® — ¢'). Since
r2=rt? =1 (mod b), if r£2 # 1 and r¢2 # 1, then £,/ > b/y/7. It is easy to see that

(ub’— » ) >b' -1,

3. With the same notation as in the previous solution, since ¢ | (5 — 1)%, it suffices to
prove the following lemma:

unless r =u=1.

Lemma. Let b > 2. If a positive integer z =1 (mod °) divides (b* — 1)?, then z =1 or
2= (8 = 1) or (b,2) = (4,49) or (4,81).

To prove this lemma, let p, g be positive integers with p > ¢ > 0 satisfying (b° - 1)° =
(pb? + 1)(gb® + 1). Then
b =2b+p+q+pgh’. (1)

A natural observation leads us to multiply (1) by gb? — 1. We get
(alpg = #) +1)b* =p— (a+20)(a¥" — 1).
Together with the simple estimation

3 Pml@WER -1 1
W
the conclusion of the lemma follows.
Comment2-3. The problem was originally proposed in the following form:

Let a, b be relatively prime positive integers. Suppose that a?/(2ab? — b +1)
is a positive integer greater than 1. Prove that b= 1.




[image: image4.jpg]Problem 3. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to v/3/2 times the sum of their
lengths.

Prove that all the angles of the hexagon are equal.

Solution 3-1.  We first prove the following lemma:

Lemma. Consider a triangle PQR with ZQPR > 60°. Let L be the midpoint of QR.
Then PL < V3QR/2, with equality if and only if the triangle PQR is equilateral.

Proof.

Let § be the point such that the triangle QRS is equilateral, where the points P and
S lie in the same half-plane bounded by the line QR. Then the point P lies inside the
circumcircle of the triangle QRS, which lies inside the circle with centre L and radius
V3QR/2. This completes the proof of the lemma.

M




[image: image5.jpg]The main diagonals of a convex hexagon form a triangle though the triangle can be
degenerated. Thus we may choose two of these three diagonals that form an angle greater
than or equal to 60°. Without loss of generality, we may assume that the diagonals AD and
BE of the given hexagon ABCDEF satisfy ZAPB > 60°, where P is the intersection of
these diagonals. Then, using the lemma, we obtain

MN = g(AB{»DE] >PM+PN 2> MN,

where M and N are the midpoints of AB and DE, respectively. Thus it follows from the
lemma that the triangles ABP and DEP are equilateral.

Therefore the diagonal CF forms an angle greater than or equal to 60° with one of the
diagonals AD and BE. Without loss of generality, we may assume that ZAQF > 60°, where
Q s the intersection of AD and CF. Arguing in the same way as above, we infer that the
triangles AQF and CQD are equilateral. This implies that ZBRC = 60°, where R is the
intersection of BE and CF. Using the same argument as above for the third time, we obtain
that the triangles BCR and EFR are equilateral. This completes the solution,

Solution 3-2. Let ABCDEF be the given hexagon and let a = AB, b= BC, ..., f = FA.

B _a M

Let M and N be the midpoints of the sides AB and DE, respectively. We have

m:%a+b+c+%d and MN= %a—ff

Thus we obtain

m:%(b+c—e—f), o)
From the given property, we have

N = ?(lal +1d) >

@
Setz=a—d,y=c—f, z=e—b From (1) and (2), we obtain
ly— 2| > V3le| 3
Similarly we sce that
Iz =22 V3yl, @

le~yl 2 V3lz|. 5)




[image: image6.jpg]Note that
(3) = Iy’ -2y -z +|z 23],
@) <= | -2z-z+]af 2 3P,
(5) = lof —2z-y+ [yl 2 32"
By adding up the last three inequalities, we obtain
—lzl =yl -z -2y 2~ 22-2 -2y 20,

or —|& +y +2[? > 0. Thus 2 +y + z = 0 and the equalities hold in all inequalities above.
Hence we conclude that
z+y+z=0,
lv-z=V3jzl. ald|=,
lz==l=V3lyl. cllfllv.
le-yl=V3lzl, ellb=

Suppose that PQR is the triangle such that PO = z, QR = y, RP = 2. We may
assume ZQPR > 60°, without loss of generality. Let L be the midpoint of QR, then
PL = |z — z|/2 = V31yl/2 = V3QR/2. 1t follows from the lemma in Solution 1 that the
triangle PQR is equilateral. Thus we have ZABC = ZBCD LFAB =120°.

Comment. We have obtained the complete characterisation of the hexagons satisfying the
given property. They are all obtained from an equilateral triangle by cutting its ‘corners’ at
the same height.




[image: image7.jpg]Problem 4. Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ZABC and ZADC are concurrent with AC.

Solution 4-1.

It is well-known that P, @, R are collinear (Simson’s theorem). Moreover, since ZDPC'
and ZDQC are right angles, the points D, P, @, C are concyclic and so ZDCA = ZDPQ =
£DPR. Similarly, since D, Q, R, A are concyclic, we have ZDAC = ZDRP. Therefore
ADCA~ ADPR.

Likewise, ADAB ~ ADQP and ADBC ~ ADRQ. Then

DA_DR_DB-§ QR BA
DC ™ DP DB-22 PQ BC

Thus PQ = QR if and only if DA/DC = BA/BC.

Now the bisectors of the angles ABC and ADC divide AC in the ratios of BA/BC and
DA/DC, respectively. This completes the proof.




[image: image8.jpg]Solution 4-2. Suppose that the bisectors of ZABC and ZADC meet AC at L and M,
respectively. Since AL/CL = AB/CB and AM/CM = AD/CD, the bisectors in question

meet on AC if and only if AB/CB = AD/CD, that is, AB-CD = CB - AD. We will prove
that AB-CD = CB - AD is cquivalent to PQ = QR.

Because DP L BC, DQ L AC, DR L AB, the circles with diameters DC and DA
contain the pairs of points P, Q and @, R, respectively. It follows that ZPDQ is equal
to ¥ or 180° — v, where 7 = ZACB. Likewise, ZQDR is equal to a or 180° — o, where
= ZCAB. Then, by the law of sines, we have PQ = CDsiny and QR = ADsina. Hence
the condition PQ = QR is equivalent to CD/AD = sina/siny.

On the other hand, sina/siny = CB/AB by the law of sines again. Thus PQ = QR if
and only if CD/AD = CB/AB, which is the same as AB-CD = CB - AD.

Comment 4. Solution 2 shows that this problem can be solved without the knowledge of
Simson’s theorem.




[image: image9.jpg]Problem 5. Let n be a positive integer and let z; < 75 < --+ < z, be real numbers.

(1) Prove that

(2‘? Iz;—z,() 2D,

=t =t

(2) Show that the equality holds if and only if 7, ..., z, is an arithmetic sequence.

Solufion 5. (1) Since both sides of the inequality are invariant under any translation of all
2i’s, we may assume without loss of generality that Y, z; = 0.

‘We have "
2 |z =25l = zZ(x, —z)=2) (2 —n-
?

=

By the Cauchy-Schwarz inequality, we have

(E |zi—:,|)2 542(21—‘"71)!;1{

o=

n(n+ la)(n— 1) ;"z'

On the other hand, we have

> -z

pe=t

—gz‘Zz,+uZzz.— n3os

=

Therefore

= 2oy &
Yla ——)Z(n—z;)’.
= =]
(2) If the equality holds, then z; = k(2i —n — 1) for some k, which means that z, ..., z,
is an arithmetic sequence.

On the other hand, suppose that 21, ..., Za, is an arithmetic sequence with common
difference d. Then we have

iy TtE
n=g@i-n-1+ 275

Translate z,'s by —(z; +.)/2 to obtain z; = d(2i —n —1)/2 and ¥, z, = 0, from which
the equality follows.




[image: image10.jpg]Problem 6. Let p be a prime number. Prove that there exists a prime number ¢ such that
for every integer 7, the rumber 7 — p is not divisible by g.

Solution . Since (37 —1)/(p—1) =1+ p+p*+-+-+p"" = p+1 (mod p?), we can get at
least one prime divisor of (p? — 1)/(p — 1) which is not congruent to 1 modulo p*. Denote
such a prime divisor by ¢. This ¢ is what we wanted. The proof is as follows. Assume that
there exists an integer n such that n? = p (mod g). Then we have n** = p? = 1 (mod q)
by the definition of g. On the other hand, from Fermat’s little theorem, n?~! = 1 (mod g),
because ¢ is a prime. Since p { g — 1, we have (%, ¢ — 1) | p, which leads to n? =1 (mod g).
Hence we have p= 1 (mod g). However, this implies 1+ p-+++++p*~* = p (mod g). From
the definition of g, this leads to p =0 (mod g), a contradiction.

Comment é-1. First, students will come up, perhaps, with the idea that g has to be of the
form pk + 1. Then,

n wP=p (modg) < p* (mod g),
ie,
Vn nP#p (modg) <> p*#1 (modq).

S0, we have to find such g. These observations will take you quite naturally to the idea
of taking a prime divisor of p* — 1. Therefore the idea of the solution is not 5o tricky or
technical.

Comment 6-2. The prime g satisfies the required condition if and only if g remains a prime
in k = Q(¢/p). By applying Chebotarev’s density theorem to the Galois closure of k, we
see that the set of such g has the density 1/p. In particular, there are infinitely many ¢
satisfying the required condition. This gives an alternative solution to the problem.




